18,566 research outputs found

    The role of initial conditions in the ageing of the long-range spherical model

    Full text link
    The kinetics of the long-range spherical model evolving from various initial states is studied. In particular, the large-time auto-correlation and -response functions are obtained, for classes of long-range correlated initial states, and for magnetized initial states. The ageing exponents can depend on certain qualitative features of initial states. We explicitly find the conditions for the system to cross over from ageing classes that depend on initial conditions to those that do not.Comment: 15 pages; corrected some typo

    Biosatellite attitude stabilization and control system

    Get PDF
    Design and operation of attitude stabilization and control system for Biosatellit

    Critical behavior of vector models with cubic symmetry

    Full text link
    We report on some results concerning the effects of cubic anisotropy and quenched uncorrelated impurities on multicomponent spin models. The analysis of the six-loop three-dimensional series provides an accurate description of the renormalization-group flow.Comment: 6 pages. Talk given at the V International Conference Renormalization Group 2002, Strba, Slovakia, March 10-16 200

    Dynamic crossover in the global persistence at criticality

    Full text link
    We investigate the global persistence properties of critical systems relaxing from an initial state with non-vanishing value of the order parameter (e.g., the magnetization in the Ising model). The persistence probability of the global order parameter displays two consecutive regimes in which it decays algebraically in time with two distinct universal exponents. The associated crossover is controlled by the initial value m_0 of the order parameter and the typical time at which it occurs diverges as m_0 vanishes. Monte-Carlo simulations of the two-dimensional Ising model with Glauber dynamics display clearly this crossover. The measured exponent of the ultimate algebraic decay is in rather good agreement with our theoretical predictions for the Ising universality class.Comment: 5 pages, 2 figure

    An exact solution for the KPZ equation with flat initial conditions

    Full text link
    We provide the first exact calculation of the height distribution at arbitrary time tt of the continuum KPZ growth equation in one dimension with flat initial conditions. We use the mapping onto a directed polymer (DP) with one end fixed, one free, and the Bethe Ansatz for the replicated attractive boson model. We obtain the generating function of the moments of the DP partition sum as a Fredholm Pfaffian. Our formula, valid for all times, exhibits convergence of the free energy (i.e. KPZ height) distribution to the GOE Tracy Widom distribution at large time.Comment: 4 pages, no figur

    Time evolution of 1D gapless models from a domain-wall initial state: SLE continued?

    Full text link
    We study the time evolution of quantum one-dimensional gapless systems evolving from initial states with a domain-wall. We generalize the path-integral imaginary time approach that together with boundary conformal field theory allows to derive the time and space dependence of general correlation functions. The latter are explicitly obtained for the Ising universality class, and the typical behavior of one- and two-point functions is derived for the general case. Possible connections with the stochastic Loewner evolution are discussed and explicit results for one-point time dependent averages are obtained for generic \kappa for boundary conditions corresponding to SLE. We use this set of results to predict the time evolution of the entanglement entropy and obtain the universal constant shift due to the presence of a domain wall in the initial state.Comment: 27 pages, 10 figure

    Field-theory results for three-dimensional transitions with complex symmetries

    Full text link
    We discuss several examples of three-dimensional critical phenomena that can be described by Landau-Ginzburg-Wilson ϕ4\phi^4 theories. We present an overview of field-theoretical results obtained from the analysis of high-order perturbative series in the frameworks of the ϵ\epsilon and of the fixed-dimension d=3 expansions. In particular, we discuss the stability of the O(N)-symmetric fixed point in a generic N-component theory, the critical behaviors of randomly dilute Ising-like systems and frustrated spin systems with noncollinear order, the multicritical behavior arising from the competition of two distinct types of ordering with symmetry O(n1n_1) and O(n2n_2) respectively.Comment: 9 pages, Talk at the Conference TH2002, Paris, July 200

    Entanglement versus mutual information in quantum spin chains

    Full text link
    The quantum entanglement EE of a bipartite quantum Ising chain is compared with the mutual information II between the two parts after a local measurement of the classical spin configuration. As the model is conformally invariant, the entanglement measured in its ground state at the critical point is known to obey a certain scaling form. Surprisingly, the mutual information of classical spin configurations is found to obey the same scaling form, although with a different prefactor. Moreover, we find that mutual information and the entanglement obey the inequality IEI\leq E in the ground state as well as in a dynamically evolving situation. This inequality holds for general bipartite systems in a pure state and can be proven using similar techniques as for Holevo's bound.Comment: 10 pages, 3 figure

    E-ELT constraints on runaway dilaton scenarios

    Get PDF
    We use a combination of simulated cosmological probes and astrophysical tests of the stability of the fine-structure constant α\alpha, as expected from the forthcoming European Extremely Large Telescope (E-ELT), to constrain the class of string-inspired runaway dilaton models of Damour, Piazza and Veneziano. We consider three different scenarios for the dark sector couplings in the model and discuss the observational differences between them. We improve previously existing analyses investigating in detail the degeneracies between the parameters ruling the coupling of the dilaton field to the other components of the universe, and studying how the constraints on these parameters change for different fiducial cosmologies. We find that if the couplings are small (e.g., αb=αV0\alpha_b=\alpha_V\sim0) these degeneracies strongly affect the constraining power of future data, while if they are sufficiently large (e.g., αb105αV0.05\alpha_b\gtrsim10^{-5}-\alpha_V\gtrsim0.05, as in agreement with current constraints) the degeneracies can be partially broken. We show that E-ELT will be able to probe some of this additional parameter space.Comment: 16 pages, 8 figures. Updated version matching the one accepted by JCA

    Entanglement entropy of random quantum critical points in one dimension

    Get PDF
    For quantum critical spin chains without disorder, it is known that the entanglement of a segment of N>>1 spins with the remainder is logarithmic in N with a prefactor fixed by the central charge of the associated conformal field theory. We show that for a class of strongly random quantum spin chains, the same logarithmic scaling holds for mean entanglement at criticality and defines a critical entropy equivalent to central charge in the pure case. This effective central charge is obtained for Heisenberg, XX, and quantum Ising chains using an analytic real-space renormalization group approach believed to be asymptotically exact. For these random chains, the effective universal central charge is characteristic of a universality class and is consistent with a c-theorem.Comment: 4 pages, 3 figure
    corecore