828 research outputs found

    Globular cluster system erosion and nucleus formation in elliptical galaxies

    Get PDF
    The radial distribution of globular clusters in galaxies is always less peaked to the centre than the halo stars'. Extending previous work to a sample of HST globular cluster systems in ellipticals, we evaluate the number of clusters lost to the galactic centre as the integrals of the difference between the observed globular cluster system distribution and the underlying halo light profile. It results that the initial populations of globular clusters were from 25% to 50% richer than now. This significant number of missing globular clusters supports the hypothesis that a large quantity of globular cluster mass in form of globular clusters decayed and destroyed has been lost to the galactic centres, where plausibly contributed to formation and feeding of a mas sive object therein. It is relevant noting that the observed correlation between the core radius of the globular cluster system and the parent galaxy luminosity can be interpreted as a result of evolution.Comment: Latex file + 2 figures as postscript files; it needs standard MNRAS style file and epsf macro for figures. Paper submitted to MNRA

    Merging of globular clusters within inner galactic regions. II. The Nuclear Star Cluster formation

    Full text link
    In this paper we present the results of two detailed N-body simulations of the interaction of a sample of four massive globular clusters in the inner region of a triaxial galaxy. A full merging of the clusters takes place, leading to a slowly evolving cluster which is quite similar to observed Nuclear Clusters. Actually, both the density and the velocity dispersion profiles match qualitatively, and quantitatively after scaling, with observed features of many nucleated galaxies. In the case of dense initial clusters, the merger remnant shows a density profile more concentrated than that of the progenitors, with a central density higher than the sum of the central progenitors central densities. These findings support the idea that a massive Nuclear Cluster may have formed in early phases of the mother galaxy evolution and lead to the formation of a nucleus, which, in many galaxies, has indeed a luminosity profile similar to that of an extended King model. A correlation with galactic nuclear activity is suggested.Comment: 18 pages, 10 figures, 3 tables. Submitted to ApJ, main journa

    Gravitational clustering in N-body simulations

    Full text link
    In this talk we discuss some of the main theoretical problems in the understanding of the statistical properties of gravity. By means of N-body simulations we approach the problem of understanding the r\^ole of gravity in the clustering of a finite set of N-interacting particles which samples a portion of an infinite system. Through the use of the conditional average density, we study the evolution of the clustering for the system putting in evidence some interesting and not yet understood features of the process.Comment: 5 pages, 1 figur

    Clustering in N-Body gravitating systems

    Full text link
    Self-gravitating systems have acquired growing interest in statistical mechanics, due to the peculiarities of the 1/r potential. Indeed, the usual approach of statistical mechanics cannot be applied to a system of many point particles interacting with the Newtonian potential, because of (i) the long range nature of the 1/r potential and of (ii) the divergence at the origin. We study numerically the evolutionary behavior of self-gravitating systems with periodical boundary conditions, starting from simple initial conditions. We do not consider in the simulations additional effects as the (cosmological) metric expansion and/or sophisticated initial conditions, since we are interested whether and how gravity by itself can produce clustered structures. We are able to identify well defined correlation properties during the evolution of the system, which seem to show a well defined thermodynamic limit, as opposed to the properties of the ``equilibrium state''. Gravity-induced clustering also shows interesting self-similar characteristics.Comment: 6 pages, 5 figures. To be published on Physica

    NBSymple, a double parallel, symplectic N-body code running on Graphic Processing Units

    Full text link
    We present and discuss the characteristics and performances, both in term of computational speed and precision, of a numerical code which numerically integrates the equation of motions of N 'particles' interacting via Newtonian gravitation and move in an external galactic smooth field. The force evaluation on every particle is done by mean of direct summation of the contribution of all the other system's particle, avoiding truncation error. The time integration is done with second-order and sixth-order symplectic schemes. The code, NBSymple, has been parallelized twice, by mean of the Computer Unified Device Architecture to make the all-pair force evaluation as fast as possible on high-performance Graphic Processing Units NVIDIA TESLA C 1060, while the O(N) computations are distributed on various CPUs by mean of OpenMP Application Program. The code works both in single precision floating point arithmetics or in double precision. The use of single precision allows the use at best of the GPU performances but, of course, limits the precision of simulation in some critical situations. We find a good compromise in using a software reconstruction of double precision for those variables that are most critical for the overall precision of the code. The code is available on the web site astrowww.phys.uniroma1.it/dolcetta/nbsymple.htmlComment: Paper composed by 29 pages, including 9 figures. Submitted to New Astronomy

    Self-consistent models of cuspy triaxial galaxies with dark matter haloes

    Get PDF
    We have constructed realistic, self-consistent models of triaxial elliptical galaxies embedded in triaxial dark matter haloes. We examined three different models for the shape of the dark matter halo: (i) the same axis ratios as the luminous matter (0.7:0.86:1); (ii) a more prolate shape (0.5:0.66:1); (iii) a more oblate shape (0.7:0.93:1). The models were obtained by means of the standard orbital superposition technique introduced by Schwarzschild. Self-consistent solutions were found in each of the three cases. Chaotic orbits were found to be important in all of the models,and their presence was shown to imply a possible slow evolution of the shapes of the haloes. Our results demonstrate for the first time that triaxial dark matter haloes can co-exist with triaxial galaxies.Comment: Latex paper based on the AASTEX format, 20 pages, 11 figures, 2 tables. Paper submitted to Ap
    corecore