828 research outputs found
Abstracts of theses and related literature indicating current trends in arithmetic for the academically talented elementary school child written between 1957 and 1961
Thesis (Ed.M.)--Boston Universit
Globular cluster system erosion and nucleus formation in elliptical galaxies
The radial distribution of globular clusters in galaxies is always less
peaked to the centre than the halo stars'. Extending previous work to a sample
of HST globular cluster systems in ellipticals, we evaluate the number of
clusters lost to the galactic centre as the integrals of the difference between
the observed globular cluster system distribution and the underlying halo light
profile.
It results that the initial populations of globular clusters were from 25% to
50% richer than now.
This significant number of missing globular clusters supports the hypothesis
that a large quantity of globular cluster mass in form of globular clusters
decayed and destroyed has been lost to the galactic centres, where plausibly
contributed to formation and feeding of a mas sive object therein.
It is relevant noting that the observed correlation between the core radius
of the globular cluster system and the parent galaxy luminosity can be
interpreted as a result of evolution.Comment: Latex file + 2 figures as postscript files; it needs standard MNRAS
style file and epsf macro for figures. Paper submitted to MNRA
Merging of globular clusters within inner galactic regions. II. The Nuclear Star Cluster formation
In this paper we present the results of two detailed N-body simulations of
the interaction of a sample of four massive globular clusters in the inner
region of a triaxial galaxy. A full merging of the clusters takes place,
leading to a slowly evolving cluster which is quite similar to observed Nuclear
Clusters. Actually, both the density and the velocity dispersion profiles match
qualitatively, and quantitatively after scaling, with observed features of many
nucleated galaxies. In the case of dense initial clusters, the merger remnant
shows a density profile more concentrated than that of the progenitors, with a
central density higher than the sum of the central progenitors central
densities. These findings support the idea that a massive Nuclear Cluster may
have formed in early phases of the mother galaxy evolution and lead to the
formation of a nucleus, which, in many galaxies, has indeed a luminosity
profile similar to that of an extended King model. A correlation with galactic
nuclear activity is suggested.Comment: 18 pages, 10 figures, 3 tables. Submitted to ApJ, main journa
Gravitational clustering in N-body simulations
In this talk we discuss some of the main theoretical problems in the
understanding of the statistical properties of gravity. By means of N-body
simulations we approach the problem of understanding the r\^ole of gravity in
the clustering of a finite set of N-interacting particles which samples a
portion of an infinite system. Through the use of the conditional average
density, we study the evolution of the clustering for the system putting in
evidence some interesting and not yet understood features of the process.Comment: 5 pages, 1 figur
Clustering in N-Body gravitating systems
Self-gravitating systems have acquired growing interest in statistical
mechanics, due to the peculiarities of the 1/r potential. Indeed, the usual
approach of statistical mechanics cannot be applied to a system of many point
particles interacting with the Newtonian potential, because of (i) the long
range nature of the 1/r potential and of (ii) the divergence at the origin. We
study numerically the evolutionary behavior of self-gravitating systems with
periodical boundary conditions, starting from simple initial conditions. We do
not consider in the simulations additional effects as the (cosmological) metric
expansion and/or sophisticated initial conditions, since we are interested
whether and how gravity by itself can produce clustered structures. We are able
to identify well defined correlation properties during the evolution of the
system, which seem to show a well defined thermodynamic limit, as opposed to
the properties of the ``equilibrium state''.
Gravity-induced clustering also shows interesting self-similar
characteristics.Comment: 6 pages, 5 figures. To be published on Physica
NBSymple, a double parallel, symplectic N-body code running on Graphic Processing Units
We present and discuss the characteristics and performances, both in term of
computational speed and precision, of a numerical code which numerically
integrates the equation of motions of N 'particles' interacting via Newtonian
gravitation and move in an external galactic smooth field. The force evaluation
on every particle is done by mean of direct summation of the contribution of
all the other system's particle, avoiding truncation error. The time
integration is done with second-order and sixth-order symplectic schemes. The
code, NBSymple, has been parallelized twice, by mean of the Computer Unified
Device Architecture to make the all-pair force evaluation as fast as possible
on high-performance Graphic Processing Units NVIDIA TESLA C 1060, while the
O(N) computations are distributed on various CPUs by mean of OpenMP Application
Program. The code works both in single precision floating point arithmetics or
in double precision. The use of single precision allows the use at best of the
GPU performances but, of course, limits the precision of simulation in some
critical situations. We find a good compromise in using a software
reconstruction of double precision for those variables that are most critical
for the overall precision of the code. The code is available on the web site
astrowww.phys.uniroma1.it/dolcetta/nbsymple.htmlComment: Paper composed by 29 pages, including 9 figures. Submitted to New
Astronomy
Self-consistent models of cuspy triaxial galaxies with dark matter haloes
We have constructed realistic, self-consistent models of triaxial elliptical
galaxies embedded in triaxial dark matter haloes. We examined three different
models for the shape of the dark matter halo: (i) the same axis ratios as the
luminous matter (0.7:0.86:1); (ii) a more prolate shape (0.5:0.66:1); (iii) a
more oblate shape (0.7:0.93:1). The models were obtained by means of the
standard orbital superposition technique introduced by Schwarzschild.
Self-consistent solutions were found in each of the three cases. Chaotic orbits
were found to be important in all of the models,and their presence was shown to
imply a possible slow evolution of the shapes of the haloes. Our results
demonstrate for the first time that triaxial dark matter haloes can co-exist
with triaxial galaxies.Comment: Latex paper based on the AASTEX format, 20 pages, 11 figures, 2
tables. Paper submitted to Ap
- …
