1,181 research outputs found
Experimental investigation of water distribution in two-phase zone during gravity-dominated evaporation
We characterize the water repartition within the partially saturated
(two-phase) zone (PSZ) during evaporation out of mixed wettable porous media by
controlling the wettability of glass beads, their sizes, and as well the
surrounding relative humidity. Here, Capillary numbers are low and under these
conditions, the percolating front is stabilized by gravity. Using experimental
and numerical analyses, we find that the PSZ saturation decreases with the Bond
number, where packing of smaller particles have higher saturation values than
packing made of larger particles. Results also reveal that the extent (height)
of the PSZ, as well as water saturation in the PSZ, both increase with
wettability. We also numerically calculate the saturation exclusively contained
in connected liquid films and results show that values are less than the
expected PSZ saturation. These results strongly reflect that the two-phase zone
is not solely made up of connected capillary networks, but also made of
disconnected water clusters or pockets. Moreover, we also find that global
saturation (PSZ + full wet zone) decreases with wettability, confirming that
greater quantity of water is lost via evaporation with increasing
hydrophilicity. These results show that connected liquid films are favored in
more hydrophilic systems while disconnected water pockets are favored in less
hydrophilic systems
Unified Multifractal Description of Velocity Increments Statistics in Turbulence: Intermittency and Skewness
The phenomenology of velocity statistics in turbulent flows, up to now,
relates to different models dealing with either signed or unsigned longitudinal
velocity increments, with either inertial or dissipative fluctuations. In this
paper, we are concerned with the complete probability density function (PDF) of
signed longitudinal increments at all scales. First, we focus on the symmetric
part of the PDFs, taking into account the observed departure from scale
invariance induced by dissipation effects. The analysis is then extended to the
asymmetric part of the PDFs, with the specific goal to predict the skewness of
the velocity derivatives. It opens the route to the complete description of all
measurable quantities, for any Reynolds number, and various experimental
conditions. This description is based on a single universal parameter function
D(h) and a universal constant R*.Comment: 13 pages, 3 figures, Extended version, Publishe
Effects of electromagnetic waves on the electrical properties of contacts between grains
A DC electrical current is injected through a chain of metallic beads. The
electrical resistances of each bead-bead contacts are measured. At low current,
the distribution of these resistances is large and log-normal. At high enough
current, the resistance distribution becomes sharp and Gaussian due to the
creation of microweldings between some beads. The action of nearby
electromagnetic waves (sparks) on the electrical conductivity of the chain is
also studied. The spark effect is to lower the resistance values of the more
resistive contacts, the best conductive ones remaining unaffected by the spark
production. The spark is able to induce through the chain a current enough to
create microweldings between some beads. This explains why the electrical
resistance of a granular medium is so sensitive to the electromagnetic waves
produced in its vicinity.Comment: 4 pages, 5 figure
A nonextensive entropy approach to solar wind intermittency
The probability distributions (PDFs) of the differences of any physical
variable in the intermittent, turbulent interplanetary medium are scale
dependent. Strong non-Gaussianity of solar wind fluctuations applies for short
time-lag spacecraft observations, corresponding to small-scale spatial
separations, whereas for large scales the differences turn into a Gaussian
normal distribution. These characteristics were hitherto described in the
context of the log-normal, the Castaing distribution or the shell model. On the
other hand, a possible explanation for nonlocality in turbulence is offered
within the context of nonextensive entropy generalization by a recently
introduced bi-kappa distribution, generating through a convolution of a
negative-kappa core and positive-kappa halo pronounced non-Gaussian structures.
The PDFs of solar wind scalar field differences are computed from WIND and ACE
data for different time lags and compared with the characteristics of the
theoretical bi-kappa functional, well representing the overall scale dependence
of the spatial solar wind intermittency. The observed PDF characteristics for
increased spatial scales are manifest in the theoretical distribution
functional by enhancing the only tuning parameter , measuring the
degree of nonextensivity where the large-scale Gaussian is approached for
. The nonextensive approach assures for experimental studies
of solar wind intermittency independence from influence of a priori model
assumptions. It is argued that the intermittency of the turbulent fluctuations
should be related physically to the nonextensive character of the
interplanetary medium counting for nonlocal interactions via the entropy
generalization.Comment: 17 pages, 7 figures, accepted for publication in Astrophys.
Universality in fully developed turbulence
We extend the numerical simulations of She et al. [Phys.\ Rev.\ Lett.\ 70,
3251 (1993)] of highly turbulent flow with Taylor-Reynolds number
up to , employing a reduced wave
vector set method (introduced earlier) to approximately solve the Navier-Stokes
equation. First, also for these extremely high Reynolds numbers ,
the energy spectra as well as the higher moments -- when scaled by the spectral
intensity at the wave number of peak dissipation -- can be described by
{\it one universal} function of for all . Second, the ISR
scaling exponents of this universal function are in agreement with
the 1941 Kolmogorov theory (the better, the large is), as is the
dependence of . Only around viscous damping leads to
slight energy pileup in the spectra, as in the experimental data (bottleneck
phenomenon).Comment: 14 pages, Latex, 5 figures (on request), 3 tables, submitted to Phys.
Rev.
Multi-parameter generalization of nonextensive statistical mechanics
We show that the stochastic interpretation of Tsallis' thermostatistics given
recently by Beck [Phys. Rev. Lett {\bf 87}, 180601 (2001)] leads naturally to a
multi-parameter generalization. The resulting class of distributions is able to
fit experimental results which cannot be reproduced within the Boltzmann's or
Tsallis' formalism.Comment: ReVTex 4.0, 4 eps figure
Intermittency and the Slow Approach to Kolmogorov Scaling
From a simple path integral involving a variable volatility in the velocity
differences, we obtain velocity probability density functions with exponential
tails, resembling those observed in fully developed turbulence. The model
yields realistic scaling exponents and structure functions satisfying extended
self-similarity. But there is an additional small scale dependence for
quantities in the inertial range, which is linked to a slow approach to
Kolmogorov (1941) scaling occurring in the large distance limit.Comment: 10 pages, 5 figures, minor changes to mirror version to appear in PR
A multifractal random walk
We introduce a class of multifractal processes, referred to as Multifractal
Random Walks (MRWs). To our knowledge, it is the first multifractal processes
with continuous dilation invariance properties and stationary increments. MRWs
are very attractive alternative processes to classical cascade-like
multifractal models since they do not involve any particular scale ratio. The
MRWs are indexed by few parameters that are shown to control in a very direct
way the multifractal spectrum and the correlation structure of the increments.
We briefly explain how, in the same way, one can build stationary multifractal
processes or positive random measures.Comment: 5 pages, 4 figures, uses RevTe
Some aspects of electrical conduction in granular systems of various dimensions
We report on measurements of the electrical conductivity in both a 2D
triangular lattice of metallic beads and in a chain of beads. The
voltage/current characteristics are qualitatively similar in both experiments.
At low applied current, the voltage is found to increase logarithmically in a
good agreement with a model of widely distributed resistances in series. At
high enough current, the voltage saturates due to the local welding of
microcontacts between beads. The frequency dependence of the saturation voltage
gives an estimate of the size of these welded microcontacts. The DC value of
the saturation voltage (~ 0.4 V per contact) gives an indirect measure of the
number of welded contact carrying the current within the 2D lattice. Also, a
new measurement technique provides a map of the current paths within the 2D
lattice of beads. For an isotropic compression of the 2D granular medium, the
current paths are localized in few discrete linear paths. This
quasi-onedimensional nature of the electrical conductivity thus explains the
similarity between the characteristics in the 1D and 2D systems.Comment: To be published in The European Physical Journal
Evidences of Bolgiano scaling in 3D Rayleigh-Benard convection
We present new results from high-resolution high-statistics direct numerical
simulations of a tri-dimensional convective cell. We test the fundamental
physical picture of the presence of both a Bolgiano-like and a Kolmogorov-like
regime. We find that the dimensional predictions for these two distinct regimes
(characterized respectively by an active and passive role of the temperature
field) are consistent with our measurements.Comment: 4 pages, 3 figure
- …
