1,050 research outputs found
Three-dimensional structure of the flow inside the left ventricle of the human heart
The laboratory models of the human heart left ventricle developed in the last
decades gave a valuable contribution to the comprehension of the role of the
fluid dynamics in the cardiac function and to support the interpretation of the
data obtained in vivo. Nevertheless, some questions are still open and new ones
stem from the continuous improvements in the diagnostic imaging techniques.
Many of these unresolved issues are related to the three-dimensional structure
of the left-ventricular flow during the cardiac cycle. In this paper we
investigated in detail this aspect using a laboratory model. The ventricle was
simulated by a flexible sack varying its volume in time according to a
physiologically shaped law. Velocities measured during several cycles on series
of parallel planes, taken from two orthogonal points of view, were combined
together in order to reconstruct the phase averaged, three-dimensional velocity
field. During the diastole, three main steps are recognized in the evolution of
the vortical structures: i) straight propagation in the direction of the long
axis of a vortex-ring originated from the mitral orifice; ii) asymmetric
development of the vortex-ring on an inclined plane; iii) single vortex
formation. The analysis of three-dimensional data gives the experimental
evidence of the reorganization of the flow in a single vortex persisting until
the end of the diastole. This flow pattern seems to optimize the cardiac
function since it directs velocity towards the aortic valve just before the
systole and minimizes the fraction of blood residing within the ventricle for
more cycles
Turbulence investigation in a laboratory model of the ascending aorta
This study aims to investigate turbulence inside a model of the
human ascending aorta as a function of the main flow control
parameters. For this purpose, we performed a two-dimensional
in vitro investigation of the pulsatile flow inside a laboratory
model of a healthy aorta by varying both the Reynolds and
Womersley numbers. Our findings indicate that the velocity
fluctuations become significant particularly during the
deceleration phase of the flow, reach the maximum near the
systolic peak and then decay during the rest of the diastole
phase. Higher levels of turbulence were recovered for
increasing Stroke Volumes, in particular maxima of Turbulent
Kinetic Energy occurred in the bulk region while higher
values of Reynolds shear stresses were found in
correspondence of the sinus of Valsalva
Circulation induced by isolated dense water formation over closed topographic contours
Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 2251-2265, doi:10.1175/JPO-D-17-0042.1.The problem of localized dense water formation over a sloping bottom is considered for the general case in which the topography forms a closed contour. This class of problems is motivated by topography around islands or shallow shoals in which convection resulting from brine rejection or surface heat loss reaches the bottom. The focus of this study is on the large-scale circulation that is forced far from the region of surface forcing. The authors find that a cyclonic current is generated around the topography, in the opposite sense to the propagation of the dense water plume. In physical terms, this current results from the propagation of low sea surface height from the region of dense water formation anticyclonically along the topographic contours back to the formation region. This pressure gradient is then balanced by a cyclonic geostrophic flow. This basic structure is well predicted by a linear quasigeostrophic theory, a primitive equation model, and in rotating tank experiments. For sufficiently strong forcing, the anticyclonic circulation of the dense plume meets this cyclonic circulation to produce a sharp front and offshore advection of dense water at the bottom and buoyant water at the surface. This nonlinear limit is demonstrated in both the primitive equation model and in the tank experiments.MAS was supported by the National Science Foundation under Grant OCE-1534618. Support for CC was given by the WHOI Ocean Climate Change Institute Proposal 27071273.2018-03-2
Experimental study of Taylor's hypothesis in a turbulent soap film
An experimental study of Taylor's hypothesis in a quasi-two-dimensional
turbulent soap film is presented. A two probe laser Doppler velocimeter enables
a non-intrusive simultaneous measurement of the velocity at spatially separated
points. The breakdown of Taylor's hypothesis is quantified using the cross
correlation between two points displaced in both space and time; correlation is
better than 90% for scales less than the integral scale. A quantitative study
of the decorrelation beyond the integral scale is presented, including an
analysis of the failure of Taylor's hypothesis using techniques from
predictability studies of turbulent flows. Our results are compared with
similar studies of 3D turbulence.Comment: 27 pages, + 19 figure
A physics-enabled flow restoration algorithm for sparse PIV and PTV measurements
The gaps and noise present in particle image velocimetry (PIV) and particle tracking velocimetry (PTV) measurements affect the accuracy of the data collected. Existing algorithms developed for the restoration of such data are only applicable to experimental measurements collected under well-prepared laboratory conditions (i.e. where the pattern of the velocity flow field is known), and the distribution, size and type of gaps and noise may be controlled by the laboratory set-up. However, in many cases, such as PIV and PTV measurements of arbitrarily turbid coastal waters, the arrangement of such conditions is not possible. When the size of gaps or the level of noise in these experimental measurements become too large, their successful restoration with existing algorithms becomes questionable. Here, we outline a new physics-enabled flow restoration algorithm (PEFRA), specially designed for the restoration of such velocity data. Implemented as a 'black box' algorithm, where no user-background in fluid dynamics is necessary, the physical structure of the flow in gappy or noisy data is able to be restored in accordance with its hydrodynamical basis. The use of this is not dependent on types of flow, types of gaps or noise in measurements. The algorithm will operate on any data time-series containing a sequence of velocity flow fields recorded by PIV or PTV. Tests with numerical flow fields established that this method is able to successfully restore corrupted PIV and PTV measurements with different levels of sparsity and noise. This assessment of the algorithm performance is extended with an example application to in situ submersible 3D-PTV measurements collected in the bottom boundary layer of the coastal ocean, where the naturally-occurring plankton and suspended sediments used as tracers causes an increase in the noise level that, without such denoising, will contaminate the measurements
How entraining density currents influence the ocean stratification
Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 53 (2006): 172-193, doi:10.1016/j.dsr2.2005.10.019.The sensitivity of the basin-scale ocean stratification to the vertical distribution of plume entrainment is being analyzed. A large ocean basin supplied by dense water from an adjoining marginal sea is considered. The dense water flows into the ocean basin as an entraining density current and
interleaves at the bottom (or at the level of neutral density), where it deposits a mixture of marginal seaand basin water. As the basin water, i.e. 'old' plume water, is entrained and re-circulated in the plume a
stratification develops in the basin. The mixture deposited at the bottom hence contains an increasing fraction of marginal sea water, and the basin density increases with depth as well as with time. A
stationary solution in which diffusion of buoyancy from above is important is approached asymptotically in time.
Non-diffusive solutions to the initial transient adjustment, as well as the diffusive asymptotic state, have been studied in four different parameterizations of plume entrainment. It is shown that in the
transient regime the basin stratification and plume density are highly sensitive to how mixing is parameterized. The stationary diffusive solution that is approached asymptotically in time is less
sensitive to parameterization but depends strongly on basin topography, source water density, and buoyancy flux at the surface.Part of this work was funded by Göteborg University and the Swedish Research Council under the contract G600-335/2001 through Prof. A. Omstedt. Support was given to CC by the National Science Foundation project number OCE-0050891
Preservation of micro-architecture and angiogenic potential in a pulmonary acellular matrix obtained using intermittent intra-tracheal flow of detergent enzymatic treatment
Tissue engineering of autologous lung tissue aims to become a therapeutic alternative to transplantation. Efforts published so far in creating scaffolds have used harsh decellularization techniques that damage the extracellular matrix (ECM), deplete its components and take up to 5 weeks to perform. The aim of this study was to create a lung natural acellular scaffold using a method that will reduce the time of production and better preserve scaffold architecture and ECM components. Decellularization of rat lungs via the intratracheal route removed most of the nuclear material when compared to the other entry points. An intermittent inflation approach that mimics lung respiration yielded an acellular scaffold in a shorter time with an improved preservation of pulmonary micro-architecture. Electron microscopy demonstrated the maintenance of an intact alveolar network, with no evidence of collapse or tearing. Pulsatile dye injection via the vasculature indicated an intact capillary network in the scaffold. Morphometry analysis demonstrated a significant increase in alveolar fractional volume, with alveolar size analysis confirming that alveolar dimensions were maintained. Biomechanical testing of the scaffolds indicated an increase in resistance and elastance when compared to fresh lungs. Staining and quantification for ECM components showed a presence of collagen, elastin, GAG and laminin. The intratracheal intermittent decellularization methodology could be translated to sheep lungs, demonstrating a preservation of ECM components, alveolar and vascular architecture. Decellularization treatment and methodology preserves lung architecture and ECM whilst reducing the production time to 3 h. Cell seeding and in vivo experiments are necessary to proceed towards clinical translation
Speckled-speckle field as a resource for imaging techniques
Correlated states of light, both classical and quantum, can find useful applications in the implementation of several imaging techniques. Among the employed sources, pseudo-thermal states, generated by the passage of a laser beam through a diffuser, represent the standard choice. To produce light with a higher level of correlation, in this work we consider and characterize the speckled-speckle field obtained with two diffusers using both a numerical simulation and an experimental implementation. In order to discuss the potential usefulness of super-thermal light in imaging protocols, we analyze the behavior of some figures of merit, namely the contrast, the signal-to-noise ratio and the image resolution. The obtained results clarify the possible advantages offered by this kind of light, and at the same time better emphasize the reasons why it does not outperform pseudo-thermal light
- …
