718 research outputs found

    Laser Spectroscopy of Niobium Fission Fragments: First Use of Optical Pumping in an Ion Beam Cooler Buncher

    Get PDF
    A new method of optical pumping in an ion beam cooler buncher has been developed to selectively enhance ionic metastable state populations. The technique permits the study of elements previously inaccessible to laser spectroscopy and has been applied here to the study of Nb. Model independent mean-square charge radii and nuclear moments have been studied for 90,90m,91,91m,92,93,99,101,103^{90,90 m,91,91 m,92,93,99,101,103}Nb to cover the region of the N=50 shell closure and N≈60 sudden onset of deformation. The increase in mean-square charge radius is observed to be less than that for Y, with a substantial degree of β softness observed before and after N=60

    Supplementary report to the final report of the coral reef expert group: S3. Synopsis of current coral reef monitoring on the Great Barrier Reef

    Get PDF
    [Extract] The intent of the future Reef 2050 Integrated Monitoring and Reporting Program (RIMReP) is not to duplicate existing arrangements but to coordinate and integrate existing monitoring, modelling and reporting programs. This report presents the results of a desktop review of 15 current coral reef monitoring programs on the Great Barrier Reef (the Reef) to guide the recommendations for the design of the RIMReP coral reef monitoring. The review had three main objectives: • Collate detailed information about the spatio-temporal design, methods, data quality and reporting processes of existing programs; • Identify which of the candidate indicators, as identified by the RIMReP Coral Reef Expert Group, are covered in existing programs; • Discuss potential limitations of the current programs.An accessible copy of this report is not yet available from this repository, please contact [email protected] for more information

    Nuclear spins, magnetic moments and quadrupole moments of Cu isotopes from N = 28 to N = 46: probes for core polarization effects

    Full text link
    Measurements of the ground-state nuclear spins, magnetic and quadrupole moments of the copper isotopes from 61Cu up to 75Cu are reported. The experiments were performed at the ISOLDE facility, using the technique of collinear laser spectroscopy. The trend in the magnetic moments between the N=28 and N=50 shell closures is reasonably reproduced by large-scale shell-model calculations starting from a 56Ni core. The quadrupole moments reveal a strong polarization of the underlying Ni core when the neutron shell is opened, which is however strongly reduced at N=40 due to the parity change between the pfpf and gg orbits. No enhanced core polarization is seen beyond N=40. Deviations between measured and calculated moments are attributed to the softness of the 56Ni core and weakening of the Z=28 and N=28 shell gaps.Comment: 13 pagers, 19 figures, accepted by Physical Review

    Vegetation in urban streets, squares, and courtyards

    Get PDF
    One of various ways in which vegetation cover used in the greening of urban areas can help improve the health and well-being of people is in how it changes the acoustic environment. This chapter presents findings of computer simulations and scale modelling to examine and quantify the effectiveness of green roof and green wall (vertical garden) systems in reducing road traffic noise for streets, squares, and roadside courtyards. Noise reduction by sound absorption in reflected and diffracted (over roofs) sound paths is investigated. Particular attention is paid to the importance of vegetation placement relative to the receiver/listening positions. Because the soil substrate used for the vertical walls has good sound absorption properties, it also can be used for green barriers. In this chapter, the effects of a low barrier made of green wall substrate are studied for an installation on the ground and on the top of buildings surrounding a courtyard

    Halos and related structures

    Full text link
    The halo structure originated in nuclear physics but is now encountered more widely. It appears in loosely bound, clustered systems where the spatial extension of the system is significantly larger than that of the binding potentials. A review is given on our current understanding of these structures, with an emphasis on how the structures evolve as more cluster components are added, and on the experimental situation concerning halo states in light nuclei.Comment: 27 pages, 3 figures, Contribution to Nobel Symposium 152 "Physics With Radioactive Beams

    Theranostic pretargeted radioimmunotherapy of colorectal cancer xenografts in mice using picomolar affinity 86Y- or 177Lu-DOTA-Bn binding scFv C825/GPA33 IgG bispecific immunoconjugates

    Get PDF
    Purpose: GPA33 is a colorectal cancer (CRC) antigen with unique retention properties after huA33-mediated tumor targeting. We tested a pretargeted radioimmunotherapy (PRIT) approach for CRC using a tetravalent bispecific antibody with dual specificity for GPA33 tumor antigen and DOTA-Bn–(radiolanthanide metal) complex. Methods: PRIT was optimized in vivo by titrating sequential intravenous doses of huA33-C825, the dextran-based clearing agent, and the C825 haptens [superscript 177]Lu-or [superscript 86]Y-DOTA-Bn in mice bearing the SW1222 subcutaneous (s.c.) CRC xenograft model. Results: Using optimized PRIT, therapeutic indices (TIs) for tumor radiation-absorbed dose of 73 (tumor/blood) and 12 (tumor/kidney) were achieved. Estimated absorbed doses (cGy/MBq) to tumor, blood, liver, spleen, and kidney for single-cycle PRIT were 65.8, 0.9 (TI 73), 6.3 (TI 10), 6.6 (TI 10), and 5.3 (TI 12), respectively. Two cycles of PRIT (66.6 or 111 MBq [superscript 177]Lu-DOTA-Bn) were safe and effective, with a complete response of established s.c. tumors (100 – 700 mm³) in nine of nine mice, with two mice alive without recurrence at >140 days. Tumor log kill in this model was estimated to be 2.1 – 3.0 based on time to 500-mm³ tumor recurrence. In addition, PRIT dosimetry/diagnosis was performed by PET imaging of the positron-emitting DOTA hapten [superscript 86]Y-DOTA-Bn. Conclusion: We have developed anti-GPA33 PRIT as a triplestep theranostic strategy for preclinical detection, dosimetry, and safe targeted radiotherapy of established human colorectal mouse xenografts.National Institute of Mental Health (U.S.) (Grant R01-CA-101830

    Developments for resonance ionization laser spectroscopy of the heaviest elements at SHIP

    Get PDF
    The experimental determination of atomic levels and the first ionization potential of the heaviest elements (Z >= 100) is key to challenge theoretical predictions and to reveal changes in the atomic shell structure. These elements are only artificially produced in complete-fusion evaporation reactions at on-line facilities such as the GSI in Darmstadt at a rate of, at most, a few atoms per second. Hence, highly sensitive spectroscopic methods are required. Laser spectroscopy is one of the most powerful and valuable tools to investigate atomic properties. In combination with a buffer-gas filled stopping cell, the Radiation Detected Resonance Ionization Spectroscopy (RADRIS) technique provides the highest sensitivity for laser spectroscopy on the heaviest elements. The RADRIS setup, as well as the measurement procedure, have been optimized and characterized using the a-emitter 155Yb in on-line conditions, resulting in an overall efficiency well above 1%. This paves the way for a successful search of excited atomic levels in nobelium and heavier elements.publisher: Elsevier articletitle: Developments for resonance ionization laser spectroscopy of the heaviest elements at SHIP journaltitle: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms articlelink: http://dx.doi.org/10.1016/j.nimb.2016.06.001 content_type: article copyright: © 2016 Elsevier B.V. All rights reserved.status: publishe

    Precision Measurement of the First Ionization Potential of Nobelium

    Get PDF
    One of the most important atomic properties governing an element’s chemical behavior is the energy required to remove its least-bound electron, referred to as the first ionization potential. For the heaviest elements, this fundamental quantity is strongly influenced by relativistic effects which lead to unique chemical properties. Laser spectroscopy on an atom-at-a-time scale was developed and applied to probe the optical spectrum of neutral nobelium near the ionization threshold. The first ionization potential of nobelium is determined here with a very high precision from the convergence of measured Rydberg series to be 6.626   21 ± 0.000   05     eV . This work provides a stringent benchmark for state-of-the-art many-body atomic modeling that considers relativistic and quantum electrodynamic effects and paves the way for high-precision measurements of atomic properties of elements only available from heavy-ion accelerator facilities

    Nuclear Spins and Magnetic Moments of 71,73,75Cu: Inversion of π2p3/2 and π1f5/2 Levels in 75Cu

    Get PDF
    We report the first confirmation of the predicted inversion between the π2p3/2 and π1f5/2 nuclear states in the νg9/2 midshell. This was achieved at the ISOLDE facility, by using a combination of in-source laser spectroscopy and collinear laser spectroscopy on the ground states of Cu71,73,75, which measured the nuclear spin and magnetic moments. The obtained values are μ(Cu71)=+2.2747(8)μN, μ(Cu73)=+1.7426(8)μN, and μ(Cu75)=+1.0062(13)μN corresponding to spins I=3/2 for Cu71,73 and I=5/2 for Cu75. The results are in fair agreement with large-scale shell-model calculations. © 2009 The American Physical Society
    corecore