42 research outputs found
Semi-automatic identification of punching areas for tissue microarray building: the tubular breast cancer pilot study
Background: Tissue MicroArray technology aims to perform immunohistochemical staining on hundreds of different tissue samples simultaneously. It allows faster analysis, considerably reducing costs incurred in staining. A time consuming phase of the methodology is the selection of tissue areas within paraffin blocks: no utilities have been developed for the identification of areas to be punched from the donor block and assembled in the recipient block.Results: The presented work supports, in the specific case of a primary subtype of breast cancer (tubular breast cancer), the semi-automatic discrimination and localization between normal and pathological regions within the tissues. The diagnosis is performed by analysing specific morphological features of the sample such as the absence of a double layer of cells around the lumen and the decay of a regular glands-and-lobules structure. These features are analysed using an algorithm which performs the extraction of morphological parameters from images and compares them to experimentally validated threshold values. Results are satisfactory since in most of the cases the automatic diagnosis matches the response of the pathologists. In particular, on a total of 1296 sub-images showing normal and pathological areas of breast specimens, algorithm accuracy, sensitivity and specificity are respectively 89%, 84% and 94%.Conclusions: The proposed work is a first attempt to demonstrate that automation in the Tissue MicroArray field is feasible and it can represent an important tool for scientists to cope with this high-throughput technique
A multiresolution approach to automated classification of protein subcellular location images
<p>Abstract</p> <p>Background</p> <p>Fluorescence microscopy is widely used to determine the subcellular location of proteins. Efforts to determine location on a proteome-wide basis create a need for automated methods to analyze the resulting images. Over the past ten years, the feasibility of using machine learning methods to recognize all major subcellular location patterns has been convincingly demonstrated, using diverse feature sets and classifiers. On a well-studied data set of 2D HeLa single-cell images, the best performance to date, 91.5%, was obtained by including a set of multiresolution features. This demonstrates the value of multiresolution approaches to this important problem.</p> <p>Results</p> <p>We report here a novel approach for the classification of subcellular location patterns by classifying in multiresolution subspaces. Our system is able to work with any feature set and any classifier. It consists of multiresolution (MR) decomposition, followed by feature computation and classification in each MR subspace, yielding local decisions that are then combined into a global decision. With 26 texture features alone and a neural network classifier, we obtained an increase in accuracy on the 2D HeLa data set to 95.3%.</p> <p>Conclusion</p> <p>We demonstrate that the space-frequency localized information in the multiresolution subspaces adds significantly to the discriminative power of the system. Moreover, we show that a vastly reduced set of features is sufficient, consisting of our novel modified Haralick texture features. Our proposed system is general, allowing for any combinations of sets of features and any combination of classifiers.</p
Multiresolution identification of germ layer components in teratomas derived from human and nonhuman primate embryonic stem cells
We propose a system for identification of germ layer components in teratomas derived from human and nonhuman primate embryonic stem cells. Tissue regeneration and repair, drug testing and discov-ery, the cure of genetic and developmental syndromes all may rest on the understanding of the biology and behavior of embryonic stem (ES) cells. Within the field of stem cell biology, an ES cell is not con-sidered an ES cell until it can produce a teratoma tumor (the ”gold” standard test); a seemingly disorganized mass of tissue derived from all three embryonic germ layers; ectoderm, mesoderm, and endo-derm. Identification and quantification of tissue types within ter-atomas derived from ES cells may expand our knowledge of abnor-mal and normal developmental programming and the response of ES cells to genetic manipulation and/or toxic exposures. In addition, because of the tissue complexity, identifying and quantifying the tis-sue is tedious and time consuming, but in turn the teratoma provides an excellent biological platform to test robust image analysis algo-rithms. We use a multiresolution (MR) classification system with texture features, as well as develop novel nuclear texture features to recognize germ layer components. With redundant MR transform, we achieve a classification accuracy of approximately 88%. Index Terms — Stem cell biology, multiresolution, classifica-tion, feature extractio
An incremental approach to automated protein localisation
Tscherepanow M, Jensen N, Kummert F. An incremental approach to automated protein localisation. BMC Bioinformatics. 2008;9(1): 445.Background:
The subcellular localisation of proteins in intact living cells is an important means for gaining information about protein functions. Even dynamic processes can be captured, which can barely be predicted based on amino acid sequences. Besides increasing our knowledge about intracellular processes, this information facilitates the development of innovative therapies and new diagnostic methods. In order to perform such a localisation, the proteins under analysis are usually fused with a fluorescent protein. So, they can be observed by means of a fluorescence microscope and analysed. In recent years, several automated methods have been proposed for performing such analyses. Here, two different types of approaches can be distinguished: techniques which enable the recognition of a fixed set of protein locations and methods that identify new ones. To our knowledge, a combination of both approaches – i.e. a technique, which enables supervised learning using a known set of protein locations and is able to identify and incorporate new protein locations afterwards – has not been presented yet. Furthermore, associated problems, e.g. the recognition of cells to be analysed, have usually been neglected.
Results:
We introduce a novel approach to automated protein localisation in living cells. In contrast to well-known techniques, the protein localisation technique presented in this article aims at combining the two types of approaches described above: After an automatic identification of unknown protein locations, a potential user is enabled to incorporate them into the pre-trained system. An incremental neural network allows the classification of a fixed set of protein location as well as the detection, clustering and incorporation of additional patterns that occur during an experiment. Here, the proposed technique achieves promising results with respect to both tasks. In addition, the protein localisation procedure has been adapted to an existing cell recognition approach. Therefore, it is especially well-suited for high-throughput investigations where user interactions have to be avoided.
Conclusion:
We have shown that several aspects required for developing an automatic protein localisation technique – namely the recognition of cells, the classification of protein distribution patterns into a set of learnt protein locations, and the detection and learning of new locations – can be combined successfully. So, the proposed method constitutes a crucial step to render image-based protein localisation techniques amenable to large-scale experiments
Phenotype Recognition with Combined Features and Random Subspace Classifier Ensemble
<p>Abstract</p> <p>Background</p> <p>Automated, image based high-content screening is a fundamental tool for discovery in biological science. Modern robotic fluorescence microscopes are able to capture thousands of images from massively parallel experiments such as RNA interference (RNAi) or small-molecule screens. As such, efficient computational methods are required for automatic cellular phenotype identification capable of dealing with large image data sets. In this paper we investigated an efficient method for the extraction of quantitative features from images by combining second order statistics, or Haralick features, with curvelet transform. A random subspace based classifier ensemble with multiple layer perceptron (MLP) as the base classifier was then exploited for classification. Haralick features estimate image properties related to second-order statistics based on the grey level co-occurrence matrix (GLCM), which has been extensively used for various image processing applications. The curvelet transform has a more sparse representation of the image than wavelet, thus offering a description with higher time frequency resolution and high degree of directionality and anisotropy, which is particularly appropriate for many images rich with edges and curves. A combined feature description from Haralick feature and curvelet transform can further increase the accuracy of classification by taking their complementary information. We then investigate the applicability of the random subspace (RS) ensemble method for phenotype classification based on microscopy images. A base classifier is trained with a RS sampled subset of the original feature set and the ensemble assigns a class label by majority voting.</p> <p>Results</p> <p>Experimental results on the phenotype recognition from three benchmarking image sets including HeLa, CHO and RNAi show the effectiveness of the proposed approach. The combined feature is better than any individual one in the classification accuracy. The ensemble model produces better classification performance compared to the component neural networks trained. For the three images sets HeLa, CHO and RNAi, the Random Subspace Ensembles offers the classification rates 91.20%, 98.86% and 91.03% respectively, which compares sharply with the published result 84%, 93% and 82% from a multi-purpose image classifier WND-CHARM which applied wavelet transforms and other feature extraction methods. We investigated the problem of estimation of ensemble parameters and found that satisfactory performance improvement could be brought by a relative medium dimensionality of feature subsets and small ensemble size.</p> <p>Conclusions</p> <p>The characteristics of curvelet transform of being multiscale and multidirectional suit the description of microscopy images very well. It is empirically demonstrated that the curvelet-based feature is clearly preferred to wavelet-based feature for bioimage descriptions. The random subspace ensemble of MLPs is much better than a number of commonly applied multi-class classifiers in the investigated application of phenotype recognition.</p
ZISC Neuro-computer for Tasks Complexity Estimation in T-DTS Framework Classification
International audienceno abstrac
Multi-Neural Networks hardware and software architecture: Application of the divide to simplify paradigm DTS
Auto-organisation d’une structure neuronale arborescente
International audienceno abstrac
