9,861 research outputs found
High-temperature deformation and microstructural analysis for Si3N4-Sc2O3
It was indicated that Si3N4 doped with Sc2O3 may exhibit high temperature mechanical properties superior to Si3N4 systems with various other oxide sintered additives. High temperature deformation of samples was studied by characterizing the microstructures before and after deformation. It was found that elements of the additive, such as Sc and O, exist in small amounts at very thin grain boundary layers and most of them stay in secondary phases at triple and multiple grain boundary junctions. These secondary phases are devitrified as crystalline Sc2Si2O7. Deformation of the samples was dominated by cavitational processes rather than movements of dislocations. Thus the excellent deformation resistance of the samples at high temperature can be attributed to the very small thickness of the grain boundary layers and the crystalline secondary phase
Kurtosis Based Blind Source Extraction of Complex Noncircular Signals with Application in EEG Artifact Removal in Real Time
A two-phase approach for detecting recombination in nucleotide sequences
Genetic recombination can produce heterogeneous phylogenetic histories within
a set of homologous genes. Delineating recombination events is important in the
study of molecular evolution, as inference of such events provides a clearer
picture of the phylogenetic relationships among different gene sequences or
genomes. Nevertheless, detecting recombination events can be a daunting task,
as the performance of different recombinationdetecting approaches can vary,
depending on evolutionary events that take place after recombination. We
recently evaluated the effects of postrecombination events on the prediction
accuracy of recombination-detecting approaches using simulated nucleotide
sequence data. The main conclusion, supported by other studies, is that one
should not depend on a single method when searching for recombination events.
In this paper, we introduce a two-phase strategy, applying three statistical
measures to detect the occurrence of recombination events, and a Bayesian
phylogenetic approach in delineating breakpoints of such events in nucleotide
sequences. We evaluate the performance of these approaches using simulated
data, and demonstrate the applicability of this strategy to empirical data. The
two-phase strategy proves to be time-efficient when applied to large datasets,
and yields high-confidence results.Comment: 5 pages, 3 figures. Chan CX, Beiko RG and Ragan MA (2007). A
two-phase approach for detecting recombination in nucleotide sequences. In
Hazelhurst S and Ramsay M (Eds) Proceedings of the First Southern African
Bioinformatics Workshop, 28-30 January, Johannesburg, 9-1
Nonfrustrated magnetoelectric with incommensurate magnetic order in magnetic field
We discuss a model nonfrustrated magnetoelectric in which strong enough
magnetoelectric coupling produces incommensurate magnetic order leading to
ferroelectricity. Properties of the magnetoelectric in magnetic field directed
perpendicular to wave vector describing the spin helix are considered in
detail. Analysis of classical energy shows that in contrast to naive
expectation the onset of ferroelectricity takes place at a field that
is lower than the saturation field . One has at strong
enough magnetoelectric coupling. We show that at H=0 the ferroelectricity
appears at . Qualitative discussion of phase diagram in
plane is presented within mean field approach.Comment: 12 pages, 3 figures, accepted in JET
- …
