947 research outputs found

    Measurement error caused by spatial misalignment in environmental epidemiology

    Get PDF
    Copyright @ 2009 Gryparis et al - Published by Oxford University Press.In many environmental epidemiology studies, the locations and/or times of exposure measurements and health assessments do not match. In such settings, health effects analyses often use the predictions from an exposure model as a covariate in a regression model. Such exposure predictions contain some measurement error as the predicted values do not equal the true exposures. We provide a framework for spatial measurement error modeling, showing that smoothing induces a Berkson-type measurement error with nondiagonal error structure. From this viewpoint, we review the existing approaches to estimation in a linear regression health model, including direct use of the spatial predictions and exposure simulation, and explore some modified approaches, including Bayesian models and out-of-sample regression calibration, motivated by measurement error principles. We then extend this work to the generalized linear model framework for health outcomes. Based on analytical considerations and simulation results, we compare the performance of all these approaches under several spatial models for exposure. Our comparisons underscore several important points. First, exposure simulation can perform very poorly under certain realistic scenarios. Second, the relative performance of the different methods depends on the nature of the underlying exposure surface. Third, traditional measurement error concepts can help to explain the relative practical performance of the different methods. We apply the methods to data on the association between levels of particulate matter and birth weight in the greater Boston area.This research was supported by NIEHS grants ES012044 (AG, BAC), ES009825 (JS, BAC), ES007142 (CJP), and ES000002 (CJP), and EPA grant R-832416 (JS, BAC)

    The separate neural control of hand movements and contact forces

    Get PDF
    To manipulate an object, we must simultaneously control the contact forces exerted on the object and the movements of our hand. Two alternative views for manipulation have been proposed: one in which motions and contact forces are represented and controlled by separate neural processes, and one in which motions and forces are controlled jointly, by a single process. To evaluate these alternatives, we designed three tasks in which subjects maintained a specified contact force while their hand was moved by a robotic manipulandum. The prescribed contact force and hand motions were selected in each task to induce the subject to attain one of three goals: (1) exerting a regulated contact force, (2) tracking the motion of the manipulandum, and (3) attaining both force and motion goals concurrently. By comparing subjects' performances in these three tasks, we found that behavior was captured by the summed actions of two independent control systems: one applying the desired force, and the other guiding the hand along the predicted path of the manipulandum. Furthermore, the application of transcranial magnetic stimulation impulses to the posterior parietal cortex selectively disrupted the control of motion but did not affect the regulation of static contact force. Together, these findings are consistent with the view that manipulation of objects is performed by independent brain control of hand motions and interaction forces

    Internationalisation, cultural distance and country characteristics: a Bayesian analysis of SME's financial performance

    Get PDF
    Relying on the accounting data of a panel of 403 Italian manufacturing SMEs collected over a period of 5 years, we find results suggesting that multinationality per se does not impact on the economic performance of international small and medium sized firms. It is the characteristics of the country selected i.e. the political hazard, the financial stability and the economic performance that significantly influence SMEs financial performance. The management implication for small and medium sized firms selecting and entering new geographic markets is significant, since our results show that for SMEs it is the market selection process that really matters and not the degree of multinationality

    Bayesian Methods for Analysis and Adaptive Scheduling of Exoplanet Observations

    Full text link
    We describe work in progress by a collaboration of astronomers and statisticians developing a suite of Bayesian data analysis tools for extrasolar planet (exoplanet) detection, planetary orbit estimation, and adaptive scheduling of observations. Our work addresses analysis of stellar reflex motion data, where a planet is detected by observing the "wobble" of its host star as it responds to the gravitational tug of the orbiting planet. Newtonian mechanics specifies an analytical model for the resulting time series, but it is strongly nonlinear, yielding complex, multimodal likelihood functions; it is even more complex when multiple planets are present. The parameter spaces range in size from few-dimensional to dozens of dimensions, depending on the number of planets in the system, and the type of motion measured (line-of-sight velocity, or position on the sky). Since orbits are periodic, Bayesian generalizations of periodogram methods facilitate the analysis. This relies on the model being linearly separable, enabling partial analytical marginalization, reducing the dimension of the parameter space. Subsequent analysis uses adaptive Markov chain Monte Carlo methods and adaptive importance sampling to perform the integrals required for both inference (planet detection and orbit measurement), and information-maximizing sequential design (for adaptive scheduling of observations). We present an overview of our current techniques and highlight directions being explored by ongoing research.Comment: 29 pages, 11 figures. An abridged version is accepted for publication in Statistical Methodology for a special issue on astrostatistics, with selected (refereed) papers presented at the Astronomical Data Analysis Conference (ADA VI) held in Monastir, Tunisia, in May 2010. Update corrects equation (3

    Statistical models for over-dispersion in the frequency of peaks over threshold data for a flow series.

    Get PDF
    In a peaks over threshold analysis of a series of river flows, a sufficiently high threshold is used to extract the peaks of independent flood events. This paper reviews existing, and proposes new, statistical models for both the annual counts of such events and the process of event peak times. The most common existing model for the process of event times is a homogeneous Poisson process. This model is motivated by asymptotic theory. However, empirical evidence suggests that it is not the most appropriate model, since it implies that the mean and variance of the annual counts are the same, whereas the counts appear to be overdispersed, i.e., have a larger variance than mean. This paper describes how the homogeneous Poisson process can be extended to incorporate time variation in the rate at which events occur and so help to account for overdispersion in annual counts through the use of regression and mixed models. The implications of these new models on the implied probability distribution of the annual maxima are also discussed. The models are illustrated using a historical flow series from the River Thames at Kingston

    A Comparison of Marginal Likelihood Computation Methods

    Get PDF
    In a Bayesian analysis, different models can be compared on the basis of theexpected or marginal likelihood they attain. Many methods have been devised to compute themarginal likelihood, but simplicity is not the strongest point of most methods. At the sametime, the precision of methods is often questionable.In this paper several methods are presented in a common framework. The explanation of thedifferences is followed by an application, in which the precision of the methods is testedon a simple regression model where a comparison with analytical results is possible

    Modeling the evolution of infrared galaxies: A Parametric backwards evolution model

    Full text link
    We aim at modeling the infrared galaxy evolution in an as simple as possible way and reproduce statistical properties among which the number counts between 15 microns and 1.1 mm, the luminosity functions, and the redshift distributions. We then aim at using this model to interpret the recent observations (Spitzer, Akari, BLAST, LABOCA, AzTEC, SPT and Herschel), and make predictions for future experiments like CCAT or SPICA. This model uses an evolution in density and luminosity of the luminosity function with two breaks at redshift ~0.9 and 2 and contains the two populations of the Lagache et al. (2004) model: normal and starburst galaxies. We also take into account the effect of the strong lensing of high-redshift sub-millimeter galaxies. It has 13 free parameters and 8 additional calibration parameters. We fit the parameters to the IRAS, Spitzer, Herschel and AzTEC measurements with a Monte-Carlo Markov chain. The model ajusted on deep counts at key wavelengths reproduces the counts from the mid-infrared to the millimeter wavelengths, as well as the mid-infrared luminosity functions. We discuss the contribution to the cosmic infrared background (CIB) and to the infrared luminosity density of the different populations. We also estimate the effect of the lensing on the number counts, and discuss the recent discovery by the South Pole Telescope (SPT) of a very bright population lying at high-redshift. We predict confusion level for future missions using a P(D) formalism, and the Universe opacity to TeV photons due to the CIB.Comment: 25 pages, 10 tables, 18 figures, accepted for publication in A&

    Horizontal principal stress orientation in the Costa Rica Seismogenesis Project (CRISP) transect from borehole breakouts

    Get PDF
    The Costa Rica Seismogenesis Project (CRISP) drilled the Pacific margin of the Middle America Trench just north of where the Cocos Ridge enters the subduction zone, resulting in basal erosion of the upper plate. Here we report the orientations of the maximum horizontal principal stress (SHmax) from borehole breakouts detected by logging-while-drilling and wireline downhole measurements. All SHmax directions were estimated in the sediment cover of the margin, above the deeper rocks of the deformed margin wedge. We observe three overall SHmax orientations: NNE-SSW (25° azimuth) in the deepest interval drilled at the upper slope Site U1379; ENE-WSW (82°) in the rest of Site U1379 and in Site U1413, also drilled in the upper slope; and NNW-SSE (157°) in the mid-slope Site U1378. Our preferred interpretation is that the deepest interval of Site U1379 records the stress conditions in the underlying margin wedge, as SHmax is parallel to the direction of the Cocos-Caribbean plate convergence and of the compressional axes of plate boundary fault earthquakes. The variable SHmax directions observed elsewhere are likely due to the effect of a network of normal faults that subdivide the sediment cover into a number of independently deforming blocks. In addition, the observed SHmax directions may be influenced by the subducting Cocos Ridge, which acts as an indenter causing oblique deformation, and by the transition to seismogenic subduction along the plate boundary fault

    Distributed digital contexts and learning : personal empowerment and social transformation in marginalized populations

    Get PDF
    The role of digital media and learning has often been synonymous with the use of open education resources in formal institutional settings. Further, open and distance learning has been criticized for focusing narrowly on educational objectives, ignoring socio-political issues of access and participation by marginalized populations. This study examines the lived experiences of female migrant domestic workers (N=20) in Singapore attending Open University. Mobile and social media supplement open and distance learning resources to allow for open practices of consumption, production and sharing in distributed contexts of digital learning. Marginalized students engaged in participation and collaboration activities, with specific privacy practices due to their social positions. Digital learning led to substantive learning for personal empowerment and social transformation, with aspirational strategies often involving digital skills. The discussion reflects on identity management across formal and informal digital settings as a means of transforming societal discourses of discrimination
    corecore