297 research outputs found
Measurement of the cosmic microwave background polarization lensing power spectrum from two years of POLARBEAR data
We present a measurement of the gravitational lensing deflection power spectrum reconstructed with two seasons of cosmic microwave background polarization data from the POLARBEAR experiment. Observations were taken at 150 GHz from 2012 to 2014 and surveyed three patches of sky totaling 30 square degrees. We test the consistency of the lensing spectrum with a cold dark matter cosmology and reject the no-lensing hypothesis at a confidence of 10.9σ, including statistical and systematic uncertainties. We observe a value of AL = 1.33 ± 0.32 (statistical) ±0.02 (systematic) ±0.07 (foreground) using all polarization lensing estimators, which corresponds to a 24% accurate measurement of the lensing amplitude. Compared to the analysis of the first- year data, we have improved the breadth of both the suite of null tests and the error terms included in the estimation of systematic contamination
Internal delensing of cosmic microwave background polarization B-Modes with the POLARBEAR experiment
International audienceUsing only cosmic microwave background polarization data from the polarbear experiment, we measure B-mode polarization delensing on subdegree scales at more than 5σ significance. We achieve a 14% B-mode power variance reduction, the highest to date for internal delensing, and improve this result to 22% by applying for the first time an iterative maximum a posteriori delensing method. Our analysis demonstrates the capability of internal delensing as a means of improving constraints on inflationary models, paving the way for the optimal analysis of next-generation primordial B-mode experiments
The bolometric focal plane array of the Polarbear CMB experiment
The Polarbear Cosmic Microwave Background (CMB) polarization experiment is
currently observing from the Atacama Desert in Northern Chile. It will
characterize the expected B-mode polarization due to gravitational lensing of
the CMB, and search for the possible B-mode signature of inflationary
gravitational waves. Its 250 mK focal plane detector array consists of 1,274
polarization-sensitive antenna-coupled bolometers, each with an associated
lithographed band-defining filter. Each detector's planar antenna structure is
coupled to the telescope's optical system through a contacting dielectric
lenslet, an architecture unique in current CMB experiments. We present the
initial characterization of this focal plane
Development and characterization of the readout system for POLARBEAR-2
POLARBEAR-2 is a next-generation receiver for precision measurements of the
polarization of the cosmic microwave background (Cosmic Microwave Background
(CMB)). Scheduled to deploy in early 2015, it will observe alongside the
existing POLARBEAR-1 receiver, on a new telescope in the Simons Array on Cerro
Toco in the Atacama desert of Chile. For increased sensitivity, it will feature
a larger area focal plane, with a total of 7,588 polarization sensitive
antenna-coupled Transition Edge Sensor (TES) bolometers, with a design
sensitivity of 4.1 uKrt(s). The focal plane will be cooled to 250 milliKelvin,
and the bolometers will be read-out with 40x frequency domain multiplexing,
with 36 optical bolometers on a single SQUID amplifier, along with 2 dark
bolometers and 2 calibration resistors. To increase the multiplexing factor
from 8x for POLARBEAR-1 to 40x for POLARBEAR-2 requires additional bandwidth
for SQUID readout and well-defined frequency channel spacing. Extending to
these higher frequencies requires new components and design for the LC filters
which define channel spacing. The LC filters are cold resonant circuits with an
inductor and capacitor in series with each bolometer, and stray inductance in
the wiring and equivalent series resistance from the capacitors can affect
bolometer operation. We present results from characterizing these new readout
components. Integration of the readout system is being done first on a small
scale, to ensure that the readout system does not affect bolometer sensitivity
or stability, and to validate the overall system before expansion into the full
receiver. We present the status of readout integration, and the initial results
and status of components for the full array.Comment: Presented at SPIE Astronomical Telescopes and Instrumentation 2014:
Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for
Astronomy VII. Published in Proceedings of SPIE Volume 915
Cross-correlation of CMB polarization lensing with High-z submillimeter Herschel-ATLAS galaxies
We report a 4.8σ measurement of the cross-correlation signal between the cosmic microwave background (CMB) lensing convergence reconstructed from measurements of the CMB polarization made by the Polarbear experiment and the infrared-selected galaxies of the Herschel-ATLAS survey. This is the first measurement of its kind
Characterization of a half-wave plate for cosmic microwave background circular polarization measurement with POLARBEAR
A half-wave plate (HWP) is often used as a modulator to suppress systematic
error in the measurements of cosmic microwave background (CMB) polarization. A
HWP can also be used to measure circular polarization (CP) through its optical
leakage from CP to linear polarization. The CP of the CMB is predicted from
various sources, such as interactions in the Universe and extension of the
standard model. Interaction with supernova remnants of population III stars is
one of the brightest CP sources. Thus, the observation of the CP of CMB is a
new tool for searching for population III stars. In this paper, we demonstrate
the improved measurement of the leakage coefficient using the transmission
measurement of an actual HWP in the laboratory. We measured the transmittance
of linearly polarized light through the HWP used in \textsc{Polarbear} in the
frequency range of \SIrange{120}{160}{GHz}. We evaluate properties of the HWP
by fitting the data with a physical model using the Markov Chain Monte Carlo
method. We then estimate the band-averaged CP leakage coefficient using the
physical model. We find that the leakage coefficient strongly depends on the
spectra of CP sources. We thus calculate the maximum fractional leakage
coefficient from CP to linear polarization as in the
Rayleigh--Jeans spectrum. The nonzero value shows that \textsc{Polarbear} has
sensitivity to CP. Additionally, because we use the bandpass of detectors
installed in the telescope to calculate the band-averaged values, we also
consider systematic effects in the experiment.Comment: 27 pages, 7 figure
- …
