2,793 research outputs found
On the stability of the atmosphere-vegetation system in the Sahara/Sahel region
A conceptual model has been developed for the analysis of atmosphere-vegetation interaction in subtropical deserts. The model can exhibit multiple stable states-in the system: a "desert" equilibrium with low precipitation and absent vegetation and a "green" equilibrium with moderate precipitation and permanent vegetation cover. The conceptual model is applied to interpret the results of two climate-vegetation models: a comprehensive coupled atmosphere-biome model and a simple hox model. In both applications, two stable states exist for the western Sahara/Sahel region for the present-day climate, and the only green equilibrium is found for the mid-Holocene climate. The latter agrees well with paleoreconstructions of Sahara/Sahel climate and vegetation. It is shown that for present-day climate the green equilibrium is less probable than the desert equilibrium, and this explains the existence of the Sahara desert as it is today. The difference in albedo between the desert and vegetation cover appears to be the main parameter that controls an existence of multiple stable states. The Charney's mechanism of self-stabilization of subtropical deserts is generalized by accounting for atmospheric hydrology, the heat and moisture exchange at the side boundaries, and taking into account the dynamic properties of the surface. The generalized mechanism explains the self-stabilization of both desert and vegetation in the western Sahara/Sahel region, The role of surface roughness in climate-vegetation interaction is shown to be of secondary importance in comparison with albedo. Furthermore, for the high albedo, precipitation increases with increasing roughness while, for the low albedo, the opposite is found
The association between water kilomasers and compact radio sources in the starburst galaxy NGC2146
We report the detection of 22 GHz water vapor emission toward the starburst
galaxy NGC2146, made using the Effelsberg 100-m telescope. Interferometric
observations with the Very Large Array (VLA) show that a part of the emission
originates from two prominent sites of star formation that are associated with
compact radio continuum sources, likely ultra-compact HII regions. It is
concluded that the emission arises from the most luminous and distant water
`kilomasers' detected so far. Our data increase the number of water maser
detections in northern galaxies (Dec > -30 deg) with 100 micron IRAS point
source fluxes > 50 Jy to 18%.Comment: 4 pages including 3 figures, accepted for publication in A&A Lette
Stability borders of feedback control of delayed measured systems
When stabilization of unstable periodic orbits or fixed points by the method
given by Ott, Grebogi and Yorke (OGY) has to be based on a measurement delayed
by orbit lengths, the performance of unmodified OGY method is expected
to decline. For experimental considerations, it is desired to know the range of
stability with minimal knowledge of the system. We find that unmodified OGY
control fails beyond a maximal Ljapunov number of
. In this paper the area of stability is
investigated both for OGY control of known fixed points and for difference
control of unknown or inaccurately known fixed points. An estimated value of
the control gain is given. Finally we outline what extensions have to be
considered if one wants to stabilize fixed points with Ljapunov numbers above
.Comment: 5 pages LaTeX using revtex and epsfig (4 figs included). Revised
versio
Proper Motion of H2O Masers in IRAS 20050+2720 MMS1: An AU Scale Jet Associated with An Intermediate-Mass Class 0 Source
We conducted a 4 epoch 3 month VLBA proper motion study of HO masers
toward an intermediate-mass class 0 source IRAS 20050+2720 MMS1 (d=700 pc).
From milli-arcsecond (mas) resolution VLBA images, we found two groups of H2O
maser spots at the center of the submillimeter core of MMS1. One group consists
of more than intense maser spots; the other group consisting of
several weaker maser spots is located at 18 AU south-west of the intense group.
Distribution of the maser spots in the intense group shows an arc-shaped
structure which includes the maser spots that showed a clear velocity gradient.
The spatial and velocity structures of the maser spots in the arc-shape did not
significantly change through the 4 epochs. Furthermore, we found a relative
proper motion between the two groups. Their projected separation increased by
1.13+/-0.11 mas over the 4 epochs along a line connecting them. The spatial and
velocity structures of the intense group and the relative proper motions
strongly suggest that the maser emission is associated with a protostellar jet.
Comparing the observed LSR velocities with calculated radial velocities from a
simple biconical jet model, we conclude that the most of the maser emission are
likely to be associated with an accelerating biconical jet which has large
opening angle. The large opening angle of the jet traced by the masers would
support the hypothesis that poor jet collimation is an inherent property of
luminous (proto)stars.Comment: 14 pages, 10 figures, Fig.3 was downsized significantly. accepted for
publication in A&
Quantifying the effect of vegetation dynamics on the climate of the Last Glacial Maximum
International audienceThe importance of the biogeophysical atmosphere-vegetation feedback in comparison with the radiative effect of lower atmospheric CO2 concentrations and the presence of ice sheets at the last glacial maximum (LGM) is investigated with the climate system model CLIMBER-2. Equilibrium experiments reveal that most of the global cooling at the LGM (-5.1°C) relative to (natural) present-day conditions is caused by the introduction of ice sheets into the model (-3.0°C), followed by the effect of lower atmospheric CO2 levels at the LGM (-1.5°C), while a synergy between these two factors appears to be very small on global average. The biogeophysical effects of changes in vegetation cover are found to cool the global LGM climate by 0.6°C. The latter are most pronounced in the northern high latitudes, where the taiga-tundra feedback causes annually averaged temperature changes of up to -2.0°C, while the radiative effect of lower atmospheric CO2 in this region only produces a cooling of 1.5°C. Hence, in this region, the temperature changes caused by vegetation dynamics at the LGM exceed the cooling due to lower atmospheric CO2 concentrations
Ground-State SiO Maser Emission Toward Evolved Stars
We have made the first unambiguous detection of vibrational ground-state
maser emission from SiO toward six evolved stars. Using the Very Large Array,
we simultaneously observed the v=0, J=1-0, 43.4-GHz, ground-state and the v=1,
J=1-0, 43.1-GHz, first excited-state transitions of SiO toward the oxygen-rich
evolved stars IRC+10011, o Ceti, W Hya, RX Boo, NML Cyg, and R Cas and the
S-type star chi Cyg. We detected at least one v=0 SiO maser feature from six of
the seven stars observed, with peak maser brightness temperatures ranging from
10,000 K to 108,800 K. In fact, four of the seven v=0 spectra show multiple
maser peaks, a phenomenon which has not been previously observed. Ground-state
thermal emission was detected for one of the stars, RX Boo, with a peak
brightness temperature of 200 K. Comparing the v=0 and the v=1 transitions, we
find that the ground-state masers are much weaker with spectral characteristics
different from those of the first excited-state masers. For four of the seven
stars the velocity dispersion is smaller for the v=0 emission than for the v=1
emission, for one star the dispersions are roughly equivalent, and for two
stars (one of which is RX Boo) the velocity spread of the v=0 emission is
larger. In most cases, the peak flux density in the v=0 emission spectrum does
not coincide with the v=1 maser peak. Although the angular resolution of these
VLA observations were insufficient to completely resolve the spatial structure
of the SiO emission, the SiO spot maps produced from the interferometric image
cubes suggest that the v=0 masers are more extended than their v=1
counterparts
Astrometric Positions and Proper Motions of 19 Radio Stars
We have used the Very Large Array, linked with the Pie Town Very Long
Baseline Array antenna, to determine astrometric positions of 19 radio stars in
the International Celestial Reference Frame (ICRF). The positions of these
stars were directly linked to the positions of distant quasars through phase
referencing observations. The positions of the ICRF quasars are known to 0.25
mas, thus providing an absolute reference at the angular resolution of our
radio observations. Average values for the errors in our derived positions for
all sources were 13 mas and 16 mas in R.A. and declination respectively, with
accuracies approaching 1-2 mas for some of the stars observed. Differences
between the ICRF positions of the 38 quasars, and those measured from our
observations showed no systematic offsets, with mean values of -0.3 mas in R.A.
and -1.0 mas in declination. Standard deviations of the quasar position
differences of 17 mas and 11 mas in R.A. and declination respectively, are
consistent with the mean position errors determined for the stars. Our measured
positions were combined with previous Very Large Array measurements taken from
1978-1995 to determine the proper motions of 15 of the stars in our list. With
mean errors of approximately 1.6 mas/yr, the accuracies of our proper motions
approach those derived from Hipparcos, and for a few of the stars in our
program, are better than the Hipparcos values. Comparing the positions of our
radio stars with the Hipparcos catalog, we find that at the epoch of our
observations, the two frames are aligned to within formal errors of
approximately 3 mas. This result confirms that the Hipparcos frame is inertial
at the expected level.Comment: 20 pages, 9 figures Accepted by the Astronomical Journal, 2003 March
1
- …
