6 research outputs found
Production of D-myo-inositol(1,2,4,5,6)pentakisphosphate using alginate-entrapped recombinant Pantoea agglomerans glucose-1-phosphatase
The glucose-1-phosphatase encoding gene (agp) of Pantoea agglomerans was sequenced and heterologously expressed in Escherichia coli. The enzyme showed very high homology to periplasmatic glucose-1-phosphatases of other members of the Enterobacteriaceae family. It was isolated from transformed Escherichia coli cells in a single step in high yields (32.3 ± 1.2 mg per litre of culture) by Ni-NT agarose affinity chromatography to >95% purity as calculated from specific activity determinations. The purified glucose-1-phosphatase was entrapped in alginate beads with an entrapment efficiency of >80%. Temperature stability was enhanced as a consequence of entrapment, whereas pH dependence of enzyme activity was not affected. Maximum catalytic activity of entrapped glucose-1-phosphatase was found at 70°C, whereas the free enzyme exhibited maximal activity at 60°C. A single pH optimum at pH 4.5 was determined for the free and the entrapped enzyme. Kinetic parameters for the hydrolysis of sodium phytate were found to be affected by entrapment. They were determined to be K M = 0.84 mmol l-1 and k cat = 8 s-1 at pH 4.5 and 37°C for the entrapped glucose-1-phosphatase and K M = 0.35 mmol l-1 and k cat = 20.5 s-1 for the free enzyme. Complete conversion of phytate into one single myo-inositol pentakisphosphate isomer, identified as D-myo-inositol(1,2,4,5,6)pentakis-phosphate, was shown to be feasible by using the enzyme-loaded alginate beads in batch operations. The entrapped enzyme showed a high operational stability by retaining almost full activity even after ten uses
myo-Inositol Phosphate Isomers Generated by the Action of a Phytase from a Malaysian Waste-water Bacterium
Reduced-Intensity Conditioning Allogeneic Transplantation from Unrelated Donors: Evaluation of Mycophenolate Mofetil Plus Cyclosporin A as Graft-versus-Host Disease Prophylaxis
When is it rational to participate in a clinical trial? A game theory approach incorporating trust, regret and guilt
<p>Abstract</p> <p>Background</p> <p>Randomized controlled trials (RCTs) remain an indispensable form of human experimentation as a vehicle for discovery of new treatments. However, since their inception RCTs have raised ethical concerns. The ethical tension has revolved around “duties to individuals” vs. “societal value” of RCTs. By asking current patients “to sacrifice for the benefit of future patients” we risk subjugating our duties to patients’ best interest to the utilitarian goal for the good of others. This tension creates a key dilemma: when is it rational, from the perspective of the trial patients and researchers (as societal representatives of future patients), to enroll in RCTs?</p> <p>Methods</p> <p>We employed the trust version of the prisoner’s dilemma since interaction between the patient and researcher in the setting of a clinical trial is inherently based on trust. We also took into account that the patient may have regretted his/her decision to participate in the trial, while a researcher may feel guilty because he/she abused the patient’s trust.</p> <p>Results</p> <p>We found that under typical circumstances of clinical research, most patients can be expected not to trust researchers, and most researchers can be expected to abuse the patients’ trust. The most significant factor determining trust was the success of experimental or standard treatments, respectively. The more that a researcher believes the experimental treatment will be successful, the more incentive the researcher has to abuse trust. The analysis was sensitive to the assumptions about the utilities related to success and failure of therapies that are tested in RCTs. By varying all variables in the Monte Carlo analysis we found that, on average, the researcher can be expected to honor a patient’s trust 41% of the time, while the patient is inclined to trust the researcher 69% of the time. Under assumptions of our model, enrollment into RCTs represents a rational strategy that can meet both patients’ and researchers’ interests simultaneously 19% of the time.</p> <p>Conclusions</p> <p>There is an inherent ethical dilemma in the conduct of RCTs. The factors that hamper full co-operation between patients and researchers in the conduct of RCTs can be best addressed by: a) having more reliable estimates on the probabilities that new vs. established treatments will be successful, b) improving transparency in the clinical trial system to ensure fulfillment of “the social contract” between patients and researchers.</p
