1,663 research outputs found
Transfer of Vibrational Coherence Through Incoherent Energy Transfer Process in F\"{o}rster Limi
We study transfer of coherent nuclear oscillations between an excitation
energy donor and an acceptor in a simple dimeric electronic system coupled to
an unstructured thermodynamic bath and some pronounced vibrational
intramolecular mode. Our focus is on the non-linear optical response of such a
system, i.e. we study both excited state energy transfer and the compensation
of the so-called ground state bleach signal. The response function formalism
enables us to investigate a heterodimer with monomers coupled strongly to the
bath and by a weak resonance coupling to each other (F\"{o}rster rate limit).
Our work is motivated by recent observation of various vibrational signatures
in 2D coherent spectra of energy transferring systems including large
structures with a fast energy diffusion. We find that the vibrational coherence
can be transferred from donor to acceptor molecules provided the transfer rate
is sufficiently fast. The ground state bleach signal of the acceptor molecules
does not show any oscillatory signatures, and oscillations in ground state
bleaching signal of the donor prevail with the amplitude which is not
decreasing with the relaxation rate.Comment: 11 pages, 9 figure
Coherent electronic and nuclear dynamics in a rhodamine heterodimer-DNA supramolecular complex
Elucidating the role of quantum coherences in energy migration within biological and artificial multichromophoric antenna systems is the subject of an intense debate. It is also a practical matter because of the decisive implications for understanding the biological processes and engineering artificial materials for solar energy harvesting. A supramolecular rhodamine heterodimer on a DNA scaffold was suitably engineered to mimic the basic donor-acceptor unit of light-harvesting antennas. Ultrafast 2D electronic spectroscopic measurements allowed identifying clear features attributable to a coherent superposition of dimer electronic and vibrational states contributing to the coherent electronic charge beating between the donor and the acceptor. The frequency of electronic charge beating is found to be 970 cm-1 (34 fs) and can be observed for 150 fs. Through the support of high level ab initio TD-DFT computations of the entire dimer, we established that the vibrational modes preferentially optically accessed do not drive subsequent coupling between the electronic states on the 600 fs of the experiment. It was thereby possible to characterize the time scales of the early time femtosecond dynamics of the electronic coherence built by the optical excitation in a large rigid supramolecular system at a room temperature in solution. © 2017 the Owner Societies.Multi valued and parallel molecular logi
Quantum transport in quantum networks and photosynthetic complexes at the steady state
Recently, several works have analysed the efficiency of photosynthetic
complexes in a transient scenario and how that efficiency is affected by
environmental noise. Here, following a quantum master equation approach, we
study the energy and excitation transport in fully connected networks both in
general and in the particular case of the Fenna-Matthew-Olson complex. The
analysis is carried out for the steady state of the system where the excitation
energy is constantly "flowing" through the system. Steady state transport
scenarios are particularly relevant if the evolution of the quantum system is
not conditioned on the arrival of individual excitations. By adding dephasing
to the system, we analyse the possibility of noise-enhancement of the quantum
transport.Comment: 10 pages, single column, 6 figures. Accepted for publication in Plos
On
Microcavity controlled coupling of excitonic qubits
Controlled non-local energy and coherence transfer enables light harvesting
in photosynthesis and non-local logical operations in quantum computing. The
most relevant mechanism of coherent coupling of distant qubits is coupling via
the electromagnetic field. Here, we demonstrate the controlled coherent
coupling of spatially separated excitonic qubits via the photon mode of a solid
state microresonator. This is revealed by two-dimensional spectroscopy of the
sample's coherent response, a sensitive and selective probe of the coherent
coupling. The experimental results are quantitatively described by a rigorous
theory of the cavity mediated coupling within a cluster of quantum dots
excitons. Having demonstrated this mechanism, it can be used in extended
coupling channels - sculptured, for instance, in photonic crystal cavities - to
enable a long-range, non-local wiring up of individual emitters in solids
Quantum Mechanical Aspects of Cell Microtubules: Science Fiction or Realistic Possibility?
Recent experimental research with marine algae points towards quantum
entanglement at ambient temperature, with correlations between essential
biological units separated by distances as long as 20 Angstr\"oms. The
associated decoherence times, due to environmental influences, are found to be
of order 400 fs. This prompted some authors to connect such findings with the
possibility of some kind of quantum computation taking place in these
biological entities: within the decoherence time scales, the cell "quantum
calculates" the optimal "path" along which energy and signal would be
transported more efficiently. Prompted by these experimental results, in this
talk I remind the audience of a related topic proposed several years ago in
connection with the possible r\^ole of quantum mechanics and/or field theory on
dissipation-free energy transfer in microtubules (MT), which constitute
fundamental cell substructures. Quantum entanglement between tubulin dimers was
argued to be possible, provided there exists sufficient isolation from other
environmental cell effects. The model was based on certain ferroelectric
aspects of MT. In the talk I review the model and the associated experimental
tests so far and discuss future directions, especially in view of the algae
photo-experiments.Comment: 31 pages latex, 11 pdf figures, uses special macros, Invited Plenary
Talk at DICE2010, Castello Pasquini, Castiglioncello (Italy), September 13-18
201
Sports review: A content analysis of the International Review for the Sociology of Sport, the Journal of Sport and Social Issues and the Sociology of Sport Journal across 25 years
The International Review for the Sociology of Sport, the Journal of Sport and Social Issues and Sociology of Sport Journal have individually and collectively been subject to a systematic content analysis. By focusing on substantive research papers published in these three journals over a 25-year time period it is possible to identify the topics that have featured within the sociology of sport. The purpose of the study was to identify the dominant themes, sports, countries, methodological frameworks and theoretical perspectives that have appeared in the research papers published in these three journals. Using the terms, identified by the author(s), that appear in the paper’s title, abstract and/or listed as a key word, subject term or geographical term, a baseline is established to reflect on the development of the sub-discipline as represented by the content of these three journals. It is suggested that the findings illustrate what many of the more experienced practitioners in the field may have felt subjectively. On the basis of this systematic, empirical study it is now possible to identify those areas have received extensive coverage and those which are under-researched within the sociology of sport. The findings are used to inform a discussion of the role of academic journals and the recent contributions made by Michael Silk, David Andrews, Michael Atkinson and Dominic Malcolm on the past, present and future of the ‘sociology of sport’
Long-lived quantum coherence in photosynthetic complexes at physiological temperature
Photosynthetic antenna complexes capture and concentrate solar radiation by
transferring the excitation to the reaction center which stores energy from the
photon in chemical bonds. This process occurs with near-perfect quantum
efficiency. Recent experiments at cryogenic temperatures have revealed that
coherent energy transfer - a wavelike transfer mechanism - occurs in many
photosynthetic pigment-protein complexes (1-4). Using the Fenna-Matthews-Olson
antenna complex (FMO) as a model system, theoretical studies incorporating both
incoherent and coherent transfer as well as thermal dephasing predict that
environmentally assisted quantum transfer efficiency peaks near physiological
temperature; these studies further show that this process is equivalent to a
quantum random walk algorithm (5-8). This theory requires long-lived quantum
coherence at room temperature, which never has been observed in FMO. Here we
present the first evidence that quantum coherence survives in FMO at
physiological temperature for at least 300 fs, long enough to perform a
rudimentary quantum computational operation. This data proves that the
wave-like energy transfer process discovered at 77 K is directly relevant to
biological function. Microscopically, we attribute this long coherence lifetime
to correlated motions within the protein matrix encapsulating the chromophores,
and we find that the degree of protection afforded by the protein appears
constant between 77 K and 277 K. The protein shapes the energy landscape and
mediates an efficient energy transfer despite thermal fluctuations. The
persistence of quantum coherence in a dynamic, disordered system under these
conditions suggests a new biomimetic strategy for designing dedicated quantum
computational devices that can operate at high temperature.Comment: PDF files, 15 pages, 3 figures (included in the PDF file
Tawney and the third way
From the 1920s to the 1950s R. H. Tawney was the most influential socialist thinker in Britain. He articulated an ethical socialism at odds with powerful statist and mechanistic traditions in British socialist thinking. Tawney's work is thus an important antecedent to third way thinking. Tawney's religiously-based critique of the morality of capitalism was combined with a concern for detailed institutional reform, challenging simple dichotomies between public and private ownership. He began a debate about democratizing the enterprise and corporate governance though his efforts fell on stony ground. Conversely, Tawney's moralism informed a whole-hearted condemnation of market forces in tension with both his concern with institutional reform and modern third way thought. Unfortunately, he refused to engage seriously with emergent welfare economics which for many social democrats promised a more nuanced understanding of the limits of market forces. Tawney's legacy is a complex one, whose various elements form a vital part of the intellectual background to current third way thinking
Multiscale photosynthetic exciton transfer
Photosynthetic light harvesting provides a natural blueprint for
bioengineered and biomimetic solar energy and light detection technologies.
Recent evidence suggests some individual light harvesting protein complexes
(LHCs) and LHC subunits efficiently transfer excitons towards chemical reaction
centers (RCs) via an interplay between excitonic quantum coherence, resonant
protein vibrations, and thermal decoherence. The role of coherence in vivo is
unclear however, where excitons are transferred through multi-LHC/RC aggregates
over distances typically large compared with intra-LHC scales. Here we assess
the possibility of long-range coherent transfer in a simple chromophore network
with disordered site and transfer coupling energies. Through renormalization we
find that, surprisingly, decoherence is diminished at larger scales, and
long-range coherence is facilitated by chromophoric clustering. Conversely,
static disorder in the site energies grows with length scale, forcing
localization. Our results suggest sustained coherent exciton transfer may be
possible over distances large compared with nearest-neighbour (n-n) chromophore
separations, at physiological temperatures, in a clustered network with small
static disorder. This may support findings suggesting long-range coherence in
algal chloroplasts, and provides a framework for engineering large chromophore
or quantum dot high-temperature exciton transfer networks.Comment: 9 pages, 6 figures. A significantly updated version is now published
online by Nature Physics (2012
The Physical Basis for Long-lived Electronic Coherence in Photosynthetic Light Harvesting Systems
The physical basis for observed long-lived electronic coherence in
photosynthetic light-harvesting systems is identified using an analytically
soluble model. Three physical features are found to be responsible for their
long coherence lifetimes: i) the small energy gap between excitonic states, ii)
the small ratio of the energy gap to the coupling between excitonic states, and
iii) the fact that the molecular characteristics place the system in an
effective low temperature regime, even at ambient conditions. Using this
approach, we obtain decoherence times for a dimer model with FMO parameters of
160 fs at 77 K and 80 fs at 277 K. As such, significant
oscillations are found to persist for 600 fs and 300 fs, respectively, in
accord with the experiment and with previous computations. Similar good
agreement is found for PC645 at room temperature, with oscillations persisting
for 400 fs. The analytic expressions obtained provide direct insight into the
parameter dependence of the decoherence time scales.Comment: 5 figures; J. Phys. Chem. Lett. (2011
- …
