2,308 research outputs found
On the total curvatures of a tame function
Given a definable function f, enough differentiable, we study the continuity
of the total curvature function t --> K(t), total curvature of the level {f=t},
and the total absolute curvature function t-->|K| (t), total absolute curvature
of the level {f=t}. We show they admits at most finitely many discontinuities
Long-term low-dose ketoconazole treatment in bilateral macronodular adrenal hyperplasia
Medical therapy for Cushing's syndrome due to bilateral macronodular adrenal hyperplasia (BMAH) is generally administered for a limited time before surgery. Aberrant receptors antagonists show inconsistent efficacy in the long run to prevent adrenalectomy. We present a patient with BMAH, treated for 10 years with low doses of ketoconazole to control cortisol secretion. A 48-year-old woman presented with headaches and hypertension. Investigations showed the following: no clinical signs of Cushing's syndrome; enlarged lobulated adrenals; normal creatinine, potassium, and aldosterone; normal urinary aldosterone and metanephrines; elevated urinary free cortisol and steroid metabolites; and suppressed plasma renin activity and ACTH. A screening protocol for aberrant adrenal receptors failed to show any illegitimate hormone dependence. Ketoconazole caused rapid normalisation of cortisol and ACTH that persists over 10 years on treatment, while adrenals show no change in shape or size. Ketoconazole decreases cortisol in patients with Cushing's syndrome, and may prevent adrenal overgrowth. Steroid secretion in BMAH is inefficient as compared with normal adrenals or secreting tumours and can be controlled with low, well-tolerated doses of ketoconazole, as an alternative to surgery.
LEARNING POINTS: Enlarged, macronodular adrenals are often incidentally found during the investigation of hypertension in patients harboring BMAH. Although laboratory findings include low ACTH and elevated cortisol, the majority of patients do not display cushingoid features.Bilateral adrenalectomy, followed by life-long steroid replacement, is the usual treatment of this benign condition, and alternative medical therapy is sought. Therapy based on aberrant adrenal receptors gives disappointing results, and inhibitors of steroidogenesis are not always well tolerated.However, ketoconazole at low, well-tolerated doses appeared appropriate to control adrenal steroid secretion indefinitely, while preventing adrenal overgrowth. This treatment probably constitutes the most convenient long-term alternative to surgery
Geodetic, teleseismic, and strong motion constraints on slip from recent southern Peru subduction zone earthquakes
We use seismic and geodetic data both jointly and separately to constrain coseismic slip from the 12 November 1996 M_w 7.7 and 23 June 2001 M_w 8.5 southern Peru subduction zone earthquakes, as well as two large aftershocks following the 2001 earthquake on 26 June and 7 July 2001. We use all available data in our inversions: GPS, interferometric synthetic aperture radar (InSAR) from the ERS-1, ERS-2, JERS, and RADARSAT-1 satellites, and seismic data from teleseismic and strong motion stations. Our two-dimensional slip models derived from only teleseismic body waves from South American subduction zone earthquakes with M_w > 7.5 do not reliably predict available geodetic data. In particular, we find significant differences in the distribution of slip for the 2001 earthquake from models that use only seismic (teleseismic and two strong motion stations) or geodetic (InSAR and GPS) data. The differences might be related to postseismic deformation or, more likely, the different sensitivities of the teleseismic and geodetic data to coseismic rupture properties. The earthquakes studied here follow the pattern of earthquake directivity along the coast of western South America, north of 5°S, earthquakes rupture to the north; south of about 12°S, directivity is southerly; and in between, earthquakes are bilateral. The predicted deformation at the Arequipa GPS station from the seismic-only slip model for the 7 July 2001 aftershock is not consistent with significant preseismic motion
Spin noise spectroscopy to probe quantum states of ultracold fermionic atomic gases
Ultracold alkali atoms provide experimentally accessible model systems for
probing quantum states that manifest themselves at the macroscopic scale.
Recent experimental realizations of superfluidity in dilute gases of ultracold
fermionic (half-integer spin) atoms offer exciting opportunities to directly
test theoretical models of related many-body fermion systems that are
inaccessible to experimental manipulation, such as neutron stars and
quark-gluon plasmas. However, the microscopic interactions between fermions are
potentially quite complex, and experiments in ultracold gases to date cannot
clearly distinguish between the qualitatively different microscopic models that
have been proposed. Here, we theoretically demonstrate that optical
measurements of electron spin noise -- the intrinsic, random fluctuations of
spin -- can probe the entangled quantum states of ultracold fermionic atomic
gases and unambiguously reveal the detailed nature of the interatomic
interactions. We show that different models predict different sets of
resonances in the noise spectrum, and once the correct effective interatomic
interaction model is identified, the line-shapes of the spin noise can be used
to constrain this model. Further, experimental measurements of spin noise in
classical (Boltzmann) alkali vapors are used to estimate the expected signal
magnitudes for spin noise measurements in ultracold atom systems and to show
that these measurements are feasible
Laplace deconvolution on the basis of time domain data and its application to Dynamic Contrast Enhanced imaging
In the present paper we consider the problem of Laplace deconvolution with
noisy discrete non-equally spaced observations on a finite time interval. We
propose a new method for Laplace deconvolution which is based on expansions of
the convolution kernel, the unknown function and the observed signal over
Laguerre functions basis (which acts as a surrogate eigenfunction basis of the
Laplace convolution operator) using regression setting. The expansion results
in a small system of linear equations with the matrix of the system being
triangular and Toeplitz. Due to this triangular structure, there is a common
number of terms in the function expansions to control, which is realized
via complexity penalty. The advantage of this methodology is that it leads to
very fast computations, produces no boundary effects due to extension at zero
and cut-off at and provides an estimator with the risk within a logarithmic
factor of the oracle risk. We emphasize that, in the present paper, we consider
the true observational model with possibly nonequispaced observations which are
available on a finite interval of length which appears in many different
contexts, and account for the bias associated with this model (which is not
present when ). The study is motivated by perfusion imaging
using a short injection of contrast agent, a procedure which is applied for
medical assessment of micro-circulation within tissues such as cancerous
tumors. Presence of a tuning parameter allows to choose the most
advantageous time units, so that both the kernel and the unknown right hand
side of the equation are well represented for the deconvolution. The
methodology is illustrated by an extensive simulation study and a real data
example which confirms that the proposed technique is fast, efficient,
accurate, usable from a practical point of view and very competitive.Comment: 36 pages, 9 figures. arXiv admin note: substantial text overlap with
arXiv:1207.223
Adaptive density estimation for stationary processes
We propose an algorithm to estimate the common density of a stationary
process . We suppose that the process is either or
-mixing. We provide a model selection procedure based on a generalization
of Mallows' and we prove oracle inequalities for the selected estimator
under a few prior assumptions on the collection of models and on the mixing
coefficients. We prove that our estimator is adaptive over a class of Besov
spaces, namely, we prove that it achieves the same rates of convergence as in
the i.i.d framework
Spin degree of freedom in two dimensional exciton condensates
We present a theoretical analysis of a spin-dependent multicomponent
condensate in two dimensions. The case of a condensate of resonantly
photoexcited excitons having two different spin orientations is studied in
detail. The energy and the chemical potentials of this system depend strongly
on the spin polarization . When electrons and holes are located in two
different planes, the condensate can be either totally spin polarized or spin
unpolarized, a property that is measurable. The phase diagram in terms of the
total density and electron-hole separation is discussed.Comment: 4 pages, 3 figures, Accepted for publication in Physical Review
Letter
Study of ortho-to-paraexciton conversion in CuO by excitonic Lyman spectroscopy
Using time-resolved - excitonic Lyman spectroscopy, we study the
orthoexciton-to-paraexcitons transfer, following the creation of a high density
population of ultracold orthoexcitons by resonant two-photon excitation
with femtosecond pulses.
An observed fast exciton-density dependent conversion rate is attributed to
spin exchange between pairs of orthoexcitons.
Implication of these results on the feasibility of BEC of paraexcitons in
CuO is discussed
Excitonic BCS-BEC crossover at finite temperature: Effects of repulsion and electron-hole mass difference
The BCS to Bose-Einstein condensation (BEC) crossover of electron-hole (e-h)
pairs in optically excited semiconductors is studied using the two-band Hubbard
model with both repulsive and attractive interactions. Applying the
self-consistent t-matrix approximation combined with a local approximation, we
examine the properties of a normal phase and an excitonic instability. The
transition temperature from the normal phase to an e-h pair condensed one is
studied to clarify the crossover from an e-h BCS-like state to an excitonic
Bose-Einstein condensation, which takes place on increasing the e-h attraction
strength. To investigate effects of the repulsive interaction and the e-h mass
difference, we calculate the transition temperature for various parameters of
the interaction strengths, the e-h particle density, and the mass difference.
While the transition temperature in the e-h BCS regime is sufficiently
suppressed by the repulsive interaction, that of the excitonic BEC is largely
insensitive to it. We also show quantitatively that in the whole regime the
mass difference leads to large suppression of the transition temperature.Comment: 8 pages, 7 figures, to be published in Phys. Rev.
- …
