549 research outputs found

    Lasiolactols A and B Produced by the Grapevine Fungal Pathogen Lasiodiplodia mediterranea

    Get PDF
    A strain of Lasiodiplodia mediterranea, a fungus associated with grapevine decline in Sicily, produced several metabolites in liquid medium. Two new dimeric c-lactols, lasiolactols A and B (1and 2), were characterized as (2S*,3S*,4R*,5R*,20S*,30S*,40R*,50R*)- and (2R*,3S*,4R,5R*,20R*,30S*,40R*,50R*)-5-(4-hydroxymethyl-3,5-dimethyl-tetrahydro-furan-2-yloxy)-2,4-dimethyl-tetrahydro-furan-3-yl]-methanols by IR, 1D- and 2D-NMR, and HR-ESI-MS. Other fourmetabolites were identified as botryosphaeriodiplodin, (5R )-5-hydroxylasiodiplodin, (–)-(1R,2R)-jasmonic acid, and (–)-(3S,4R,5R)-4-hydroxymethyl-3,5-dimethyldihydro-2-furanone (3-6, resp.). The absolute configuration (R) at hydroxylatedsecondary C-atom C(7) was also established for compound 3. The compounds 1–3,5,and 6, tested for their phytotoxic activities to grapevine cv. Inzolia leaves at different concentrations (0.125, 0.25, 0.5, and 1 mg/ml) were phytotoxic and compound 5 showed the highest toxicity. All metabolites did not show in vitro antifungal activity against four plant pathogens

    SILAC labeling coupled to shotgun proteomics analysis of membrane proteins of liver stem/hepatocyte allows to candidate the inhibition of TGF-beta pathway as causal to differentiation

    Get PDF
    Background: Despite extensive research on hepatic cells precursors and their differentiated states, much remains to be learned about the mechanism underlying the self-renewal and differentiation.Results: We apply the SILAC (stable isotope labeling by amino acids in cell culture) approach to quantitatively compare the membrane proteome of the resident liver stem cells (RLSCs) and their progeny spontaneously differentiated into epithelial/hepatocyte (RLSCdH). By means of nanoLC-MALDI-TOF/TOF approach, we identified and quantified 248 membrane proteins and 57 of them were found modulated during hepatocyte differentiation. Functional clustering of differentially expressed proteins by Ingenuity Pathway Analysis revealed that the most of membrane proteins found to be modulated are involved in cell-to-cell signaling/interaction pathways. Moreover, the upstream prediction analysis of proteins involved in cell-to-cell signaling and interaction unveiled that the activation of the mesenchymal to epithelial transition (MET), by the repression of TGFB1/Slug signaling, may be causal to hepatocyte differentiation.Conclusions: Taken together, this study increases the understanding of the underlying mechanisms modulating the complex biological processes of hepatic stem cell proliferation and differentiation. © 2014 Montaldo et al.; licensee BioMed Central Ltd

    A simple and rapid DNA extraction method from leaves of grapevine suitable for polymerase chain reaction analysis.

    Get PDF
    The genomic grapevine (Vitis vinifera L.) DNA extraction is difficult because of secondary metabolites that interfere with DNA isolation procedures and subsequent applications. We developed a simple, rapid and efficient method for the extraction of genomic DNA from asymptomatic and pathogeninfected grape leaves. The protocol reported, based on a modified cetyl trimethylammonium bromide (CTAB) extraction procedure, allowed the rapid DNA extraction from little amounts of leaf material without employment of liquid nitrogen for initial tissue grinding. The protocol included polyvinylpyrrolidone (PVP) to bind phenolic compounds, β-mercaptoethanol to inhibit the oxidation of polyphenols, and a high concentration of NaCl (2.5 M) to increase the solubility of polysaccharides, thus reducing their co-precipitation with DNA. Final DNA solution did not contain polysaccharides, polyphenols and other major contaminants. The purity of genomic DNA was confirmed by A260/280 and A260/230 ratios calculated from the spectrophotometric readings. In addition, the quality of the DNA extracted from asymptomatic, Oidium tuckeri- and Plasmopara viticola-infected leaves of V. vinifera L. was evaluated in polymerase chain reaction (PCR) analyses by using different set of primers to be able to amplify vegetal, fungal and bacterial DNA

    Extracellular vesicle microRNAs contribute to the osteogenic inhibition of mesenchymal stem cells in multiple myeloma

    Get PDF
    Osteolytic bone disease is the major complication associated with the progression of multiple myeloma (MM). Recently, extracellular vesicles (EVs) have emerged as mediators of MM-associated bone disease by inhibiting the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Here, we investigated a correlation between the EV-mediated osteogenic inhibition and MM vesicle content, focusing on miRNAs. By the use of a MicroRNA Card, we identified a pool of miRNAs, highly expressed in EVs, from MM cell line (MM1.S EVs), expression of which was confirmed in EVs from bone marrow (BM) plasma of patients affected by smoldering myeloma (SMM) and MM. Notably,we found that miR-129-5p, which targets different osteoblast (OBs) differentiation markers, is enriched in MM-EVs compared to SMM-EVs, thus suggesting a selective packaging correlated with pathological grade. We found that miR-129-5p can be transported to hMSCs by MM-EVs and, by the use of miRNA mimics, we investigated its role in recipient cells. Our data demonstrated that the increase of miR-129-5p levels in hMSCs under osteoblastic differentiation stimuli inhibited the expression of the transcription factor Sp1, previously described as a positive modulator of osteoblastic differentiation, and of its target the Alkaline phosphatase (ALPL), thus identifying miR-129-5p among the players of vesicle-mediated bone disease

    Sull'antagonismo in vivo ed in vitro di Acremonium byssoides, endofita in Vitis vinifera, nei confronti di Plasmopara viticola

    Get PDF
    Lo studio dell\u2019interazione fra Acremonium byssoides, Vitis vinifera e Plasmopara viticola, condotto nell\u2019ultimo decennio, ha evidenziato in vitro e in vivo l\u2019attivit\ue0 antagonistica dell\u2019ifomicete, endofita negli organi verdi di alcune cultivars di vite, nei confronti del patogeno. In particolare, \ue8 stato accertato che sospensioni conidiche, filtrati colturali, estratti grezzi e metaboliti di A. byssoides riducono sensibilmente la germinazione delle spore agamiche e gamiche di P. viticola, limitando la produzione di propaguli. Inoltre, l\u2019uso di un microscopio laser confocale e l\u2019impiego di un\u2019opportuna tecnica di decolorazione dei tessuti fogliari, seguita da colorazione di contrasto, ha consentito di visualizzare l\u2019ifomicete, latente nelle nervature di foglie sane e iperparassita dell\u2019oomicete in foglie infette. In queste ultime, infatti, A. byssoides, dopo aver prodotto metaboliti secondari tossici per P. viticola, ne invade e degrada micelio, rami sporangiofori e spore gamiche. Tale attivit\ue0 antagonistica, determinando il contenimento sia della diffusione che della sopravvivenza del patogeno, pu\uf2 assumere, quindi, un ruolo rilevante nella definizione di strategie di difesa biologica contro la peronospora della vite

    MiR-675-5p supports hypoxia induced epithelial to mesenchymal transition in colon cancer cells

    Get PDF
    The survival rates in colon cancer patients are inversely proportional to the number of lymph node metastases. The hypoxia-induced Epithelial to Mesenchymal Transition (EMT), driven by HIF1\uce\ub1, is known to be involved in cancer progression and metastasis. Recently, we have reported that miR-675-5p promotes glioma growth by stabilizing HIF1\uce\ub1 here, by use of the syngeneic cell lines we investigated the role of the miR-675-5p in colon cancer metastasis. Our results show that miR-675-5p, over expressed in metastatic colon cancer cells, participates to tumour progression by regulating HIF1\uce\ub1 induced EMT. MiR-675- 5p increases Snail transcription by a dual strategy: i) stabilizing the activity of the transcription factor HIF1\uce\ub1 and ii) and inhibiting Snail's repressor DDB2 (Damage specific DNA Binding protein 2). Moreover, transcriptional analyses on specimens from colon cancer patients confirmed, in vivo, the correlation between miR-675-5p over-expression and metastasis, thus identifying miR-675-5p as a new marker for colon cancer progression and therefore a putative target for therapeutic strategies

    The stable repression of mesenchymal program is required for hepatocyte identity: A novel role for hepatocyte nuclear factor 4\uce\ub1

    Get PDF
    The concept that cellular terminal differentiation is stably maintained once development is complete has been questioned by numerous observations showing that differentiated epithelium may undergo an epithelial-to-mesenchymal transition (EMT) program. EMT and the reverse process, mesenchymal-to-epithelial transition (MET), are typical events of development, tissue repair, and tumor progression. In this study, we aimed to clarify the molecular mechanisms underlying these phenotypic conversions in hepatocytes. Hepatocyte nuclear factor 4\uce\ub1 (HNF4\uce\ub1) was overexpressed in different hepatocyte cell lines and the resulting gene expression profile was determined by real-time quantitative polymerase chain reaction. HNF4\uce\ub1 recruitment on promoters of both mesenchymal and EMT regulator genes was determined by way of electrophoretic mobility shift assay and chromatin immunoprecipitation. The effect of HNF4\uce\ub1 depletion was assessed in silenced cells and in the context of the whole liver of HNF4 knockout animals. Our results identified key EMT regulators and mesenchymal genes as new targets of HNF4\uce\ub1. HNF4\uce\ub1, in cooperation with its target HNF1\uce\ub1, directly inhibits transcription of the EMT master regulatory genes Snail, Slug, and HMGA2 and of several mesenchymal markers. HNF4\uce\ub1-mediated repression of EMT genes induces MET in hepatomas, and its silencing triggers the mesenchymal program in differentiated hepatocytes both in cell culture and in the whole liver. Conclusion: The pivotal role of HNF4\uce\ub1 in the induction and maintenance of hepatocyte differentiation should also be ascribed to its capacity to continuously repress the mesenchymal program; thus, both HNF4\uce\ub1 activator and repressor functions are necessary for the identity of hepatocytes. Copyright \uc2\ua9 2011 American Association for the Study of Liver Diseases

    Spike-in SILAC proteomic approach reveals the vitronectin as an early molecular signature of liver fibrosis in hepatitis C infections with hepatic iron overload

    Get PDF
    Hepatitis C virus (HCV)-induced iron overload has been shown to promote liver fibrosis, steatosis, and hepatocellular carcinoma. The zonal-restricted histological distribution of pathological iron deposits has hampered the attempt to perform large-scale in vivo molecular investigations on the comorbidity between iron and HCV. Diagnostic and prognostic markers are not yet available to assess iron overload-induced liver fibrogenesis and progression in HCV infections. Here, by means of Spike-in SILAC proteomic approach, we first unveiled a specific membrane protein expression signature of HCV cell cultures in the presence of iron overload. Computational analysis of proteomic dataset highlighted the hepatocytic vitronectin expression as the most promising specific biomarker for iron-associated fibrogenesis in HCV infections. Next, the robustness of our in vitro findings was challenged in human liver biopsies by immunohistochemistry and yielded two major results: (i) hepatocytic vitronectin expression is associated to liver fibrogenesis in HCV-infected patients with iron overload; (ii) hepatic vitronectin expression was found to discriminate also the transition between mild to moderate fibrosis in HCV-infected patients without iron overload. \uc2\ua9 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

    Spike-in SILAC proteomic approach reveals the vitronectin as an early molecular signature of liver fibrosis in hepatitis C infections with hepatic iron overload

    Get PDF
    Hepatitis C virus (HCV)-induced iron overload has been shown to promote liver fibrosis, steatosis, and hepatocellular carcinoma. The zonal-restricted histological distribution of pathological iron deposits has hampered the attempt to perform large-scale in vivo molecular investigations on the comorbidity between iron and HCV. Diagnostic and prognostic markers are not yet available to assess iron overload-induced liver fibrogenesis and progression in HCV infections. Here, by means of Spike-in SILAC proteomic approach, we first unveiled a specific membrane protein expression signature of HCV cell cultures in the presence of iron overload. Computational analysis of proteomic dataset highlighted the hepatocytic vitronectin expression as the most promising specific biomarker for iron-associated fibrogenesis in HCV infections. Next, the robustness of our in vitro findings was challenged in human liver biopsies by immunohistochemistry and yielded two major results: (i) hepatocytic vitronectin expression is associated to liver fibrogenesis in HCV-infected patients with iron overload; (ii) hepatic vitronectin expression was found to discriminate also the transition between mild to moderate fibrosis in HCV-infected patients without iron overload. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
    corecore