687 research outputs found

    The optical system of the H.E.S.S. imaging atmospheric Cherenkov telescopes, Part II: mirror alignment and point spread function

    Full text link
    Mirror facets of the H.E.S.S. imaging atmospheric Cherenkov telescopes are aligned using stars imaged onto the closed lid of the PMT camera, viewed by a CCD camera. The alignment procedure works reliably and includes the automatic analysis of CCD images and control of the facet alignment actuators. On-axis, 80% of the reflected light is contained in a circle of less than 1 mrad diameter. The spot widens with increasing angle to the telescope axis. In accordance with simulations, the spot size has roughly doubled at an angle of 1.4 degr. from the axis. The expected variation of spot size with elevation due to deformations of the support structure is visible, but is completely non-critical over the usual working range. Overall, the optical quality of the telescope exceeds the specifications.Comment: 23 pages, 13 figure

    Calibrating genomic and allelic coverage bias in single-cell sequencing

    Get PDF
    Artifacts introduced in whole-genome amplification (WGA) make it difficult to derive accurate genomic information from single-cell genomes and require different analytical strategies from bulk genome analysis. Here, we describe statistical methods to quantitatively assess the amplification bias resulting from whole-genome amplification of single-cell genomic DNA. Analysis of single-cell DNA libraries generated by different technologies revealed universal features of the genome coverage bias predominantly generated at the amplicon level (1–10 kb). The magnitude of coverage bias can be accurately calibrated from low-pass sequencing (∼0.1 × ) to predict the depth-of-coverage yield of single-cell DNA libraries sequenced at arbitrary depths. We further provide a benchmark comparison of single-cell libraries generated by multi-strand displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC). Finally, we develop statistical models to calibrate allelic bias in single-cell whole-genome amplification and demonstrate a census-based strategy for efficient and accurate variant detection from low-input biopsy samples.National Cancer Institute (U.S.) (Grant P30-CA14051

    A possible association of the new VHE gamma-ray source HESS J1825--137 with the pulsar wind nebula G18.0--0.7

    Full text link
    We report on a possible association of the recently discovered very high-energy γ\gamma-ray source HESS J1825--137 with the pulsar wind nebula (commonly referred to as G 18.0--0.7) of the 2.1×1042.1\times 10^{4} year old Vela-like pulsar PSR B1823--13. HESS J1825--137 was detected with a significance of 8.1 σ\sigma in the Galactic Plane survey conducted with the H.E.S.S. instrument in 2004. The centroid position of HESS J1825--137 is offset by 11\arcmin south of the pulsar position. \emph{XMM-Newton} observations have revealed X-ray synchrotron emission of an asymmetric pulsar wind nebula extending to the south of the pulsar. We argue that the observed morphology and TeV spectral index suggest that HESS J1825--137 and G 18.0--0.7 may be associated: the lifetime of TeV emitting electrons is expected to be longer compared to the {\it XMM-Newton} X-ray emitting electrons, resulting in electrons from earlier epochs (when the spin-down power was larger) contributing to the present TeV flux. These electrons are expected to be synchrotron cooled, which explains the observed photon index of 2.4\sim 2.4, and the longer lifetime of TeV emitting electrons naturally explains why the TeV nebula is larger than the X-ray size. Finally, supernova remnant expansion into an inhomogeneous medium is expected to create reverse shocks interacting at different times with the pulsar wind nebula, resulting in the offset X-ray and TeV γ\gamma-ray morphology.Comment: 5 pages, 3 figures, to appear in Astronomy and Astrophysics Letter

    Very high energy gamma rays from the direction of Sagittarius A*.

    Get PDF
    We report the detection of a point-like source of very high energy (VHE) -rays coincident within 1' of Sgr A *, obtained with the HESS array of Cherenkov telescopes. The -rays exhibit a power-law energy spectrum with a spectral index of and a flux above the 165 GeV threshold of m -2 s -1. The measured flux and spectrum differ substantially from recent results reported in particular by the CANGAROO collaboration

    Discovery of VHE gamma-rays from the high-frequency-peaked BL Lac object RGB J0152+017

    Full text link
    Aims: The BL Lac object RGB J0152+017 (z=0.080) was predicted to be a very high-energy (VHE; > 100 GeV) gamma-ray source, due to its high X-ray and radio fluxes. Our aim is to understand the radiative processes by investigating the observed emission and its production mechanism using the High Energy Stereoscopic System (H.E.S.S.) experiment. Methods: We report recent observations of the BL Lac source RGB J0152+017 made in late October and November 2007 with the H.E.S.S. array consisting of four imaging atmospheric Cherenkov telescopes. Contemporaneous observations were made in X-rays by the Swift and RXTE satellites, in the optical band with the ATOM telescope, and in the radio band with the Nancay Radio Telescope. Results: A signal of 173 gamma-ray photons corresponding to a statistical significance of 6.6 sigma was found in the data. The energy spectrum of the source can be described by a powerlaw with a spectral index of 2.95+/-0.36stat+/-0.20syst. The integral flux above 300 GeV corresponds to ~2% of the flux of the Crab nebula. The source spectral energy distribution (SED) can be described using a two-component non-thermal synchrotron self-Compton (SSC) leptonic model, except in the optical band, which is dominated by a thermal host galaxy component. The parameters that are found are very close to those found in similar SSC studies in TeV blazars. Conclusions: RGB J0152+017 is discovered as a source of VHE gamma-rays by H.E.S.S. The location of its synchrotron peak, as derived from the SED in Swift data, allows clearly classification it as a high-frequency-peaked BL Lac (HBL).Comment: Accepted for publication in A&A Letters (5 pages, 4 figures

    First detection of a VHE gamma-ray spectral maximum from a Cosmic source: H.E.S.S. discovery of the Vela X nebula

    Get PDF
    The Vela supernova remnant (SNR) is a complex region containing a number of sources of non-thermal radiation. The inner section of this SNR, within 2 degrees of the pulsar PSR B0833-45, has been observed by the H.E.S.S. gamma-ray atmospheric Cherenkov detector in 2004 and 2005. A strong signal is seen from an extended region to the south of the pulsar, within an integration region of radius 0.8 deg. around the position (RA = 08h 35m 00s, dec = -45 deg. 36' J2000.0). The excess coincides with a region of hard X-ray emission seen by the ROSAT and ASCA satellites. The observed energy spectrum of the source between 550 GeV and 65 TeV is well fit by a power law function with photon index = 1.45 +/- 0.09(stat) +/- 0.2(sys) and an exponential cutoff at an energy of 13.8 +/- 2.3(stat) +/- 4.1(sys) TeV. The integral flux above 1 TeV is (1.28 +/- 0.17 (stat) +/- 0.38(sys)) x 10^{-11} cm^{-2} s^{-1}. This result is the first clear measurement of a peak in the spectral energy distribution from a VHE gamma-ray source, likely related to inverse Compton emission. A fit of an Inverse Compton model to the H.E.S.S. spectral energy distribution gives a total energy in non-thermal electrons of ~2 x 10^{45} erg between 5 TeV and 100 TeV, assuming a distance of 290 parsec to the pulsar. The best fit electron power law index is 2.0, with a spectral break at 67 TeV.Comment: 5 pages, 4 figures, accepted for publication in Astronomy and Astrophysics letter

    Observations of Mkn 421 in 2004 with H.E.S.S. at large zenith angles

    Get PDF
    Mkn 421 was observed during a high flux state for nine nights in April and May 2004 with the fully operational High Energy Stereoscopic System (H.E.S.S.) in Namibia. The observations were carried out at zenith angles of 60^\circ--65^\circ, which result in an average energy threshold of 1.5 TeV and a collection area reaching 2~km2^2 at 10~TeV. Roughly 7000 photons from Mkn~421 were accumulated with an average gamma-ray rate of 8 photons/min. The overall significance of the detection exceeds 100 standard deviations. The light-curve of integrated fluxes above 2~TeV shows changes of the diurnal flux up to a factor of 4.3. For nights of high flux, intra-night variability is detected with a decay time of less than 1 hour. The time averaged energy spectrum is curved and is well described by a power-law with a photon index \egamm and an exponential cutoff at \ecut~TeV and an average integral flux above 2~TeV of 3 Crab flux units. Significant variations of the spectral shape are detected with a spectral hardening as the flux increases. Contemporaneous multi-wavelength observations at lower energies (X-rays and gamma-rays above 300\approx 300~GeV) indicate smaller relative variability amplitudes than seen above 2~TeV during high flux state observed in April 2004.Comment: 5 pages, 4 figures, published in A&

    3.9 day orbital modulation in the TeV gamma-ray flux and spectrum from the X-ray binary LS 5039

    Full text link
    New observations of LS 5039, a High Mass X-ray Binary comprising a massive star and compact object, were carried out with the High Energy Stereoscopic System of Cherenkov Telescopes (H.E.S.S.) in 2005 at very high energy (VHE) gamma-ray energies. These observations reveal that its flux and energy spectrum are modulated with the 3.9 day orbital period of the binary system. This is the first time in gamma-ray astronomy that orbital modulation has been observed, and periodicity clearly established using ground-based gamma-ray detectors. The VHE gamma-ray emission is largely confined to half of the orbit, peaking around the inferior conjunction epoch of the compact object. For this epoch, there is also a hardening of the energy spectrum in the energy range between 0.2 TeV and a few TeV. The flux vs. orbital phase profile provides the first clear indication of gamma-ray absorption via pair production within an astrophysical source, a process which is expected to occur if the gamma-ray production site is situated within ~1 AU of the compact object. Moreover the production region size must be not significantly greater than the binary separation (~0.15 AU). Notably, these constraints are also considerably smaller than the collimated outflows or jets (extending out to ~1000 AU) observed in LS 5039. The spectral hardening could arise from variations with phase in the maximum electron energies, and/or the dominant VHE gamma-ray production mechanism.Comment: 8 pages, 8 figures, accepted for publication in Astronomy & Astrophysic
    corecore