10 research outputs found
Relic density of dark matter in mSUGRA and non-universal SUGRA
The measurements of WMAP on the relic density of dark matter strongly
constrain supersymmetric models. In mSUGRA where the neutralino LSP is mostly a
bino only rather fine-tuned models survive. On the other hand the relic density
upper limit can be easily satisfied in models with a Higgsino or wino LSP.Comment: 8 pages, 3 figures, Invited talk at Physics at LHC, Vienna, July 200
The Higgs Working Group: Summary Report (2001)
Report of the Higgs working group for the Workshop `Physics at TeV
Colliders', Les Houches, France, 21 May - 1 June 2001. It contains 7 separate
sections: A. Theoretical Developments B. Higgs Searches at the Tevatron C.
Experimental Observation of an invisible Higgs Boson at LHC D. Search for the
Standard Model Higgs Boson using Vector Boson Fusion at the LHC E. Study of the
MSSM channel at the LHC F. Searching for Higgs Bosons in
Production G. Studies of Charged Higgs Boson Signals for the
Tevatron and the LHCComment: 120 pages, latex, many figures, proceedings of the Workshop `Physics
at TeV Colliders', Les Houches, France, 21 May - 1 June 2001, full Author
list included in paper. Typos corrected, author list and acknowledgements
completed. Convernors: D. Cavalli, A. Djouadi, K. Jakobs, A. Nikitenko, M.
Spira, C.E.M. Wagner, W.-M. Ya
Lower limit on the neutralino mass in the general MSSM
We discuss constraints on SUSY models with non-unified gaugino masses and R_P
conservation. We derive a lower bound on the neutralino mass combining the
direct limits from LEP, the indirect limits from gmuon, bsgamma, Bsmumu and the
relic density constraint from WMAP. The lightest neutralino (mneutralino=6GeV)
is found in models with a light pseudoscalar with MA<200GeV and a large value
for . Models with heavy pseudoscalars lead to mneutralino>18(29)GeV
for . We show that even a very conservative bound from the
muon anomalous magnetic moment can increase the lower bound on the neutralino
mass in models with mu<0 and/or large values of . We then examine
the potential of the Tevatron and the direct detection experiments to probe the
SUSY models with the lightest neutralinos allowed in the context of light
pseudoscalars with high . We also examine the potential of an e+e-
collider of 500GeV to produce SUSY particles in all models with neutralinos
lighter than the W. In contrast to the mSUGRA models, observation of at least
one sparticle is not always guaranteed.Comment: 37 pages, LateX, 16 figures, paper with higher resolution figures
available at
http://wwwlapp.in2p3.fr/~boudjema/papers/bound-lsp/bound-lsp.htm
The MSSM invisible Higgs in the light of dark matter and g−2
AbstractGiving up the assumption of the gaugino mass unification at the GUT scale, the latest LEP and Tevatron data still allow the lightest supersymmetric Higgs to have a large branching fraction into invisible neutralinos. Such a Higgs may be difficult to discover at the LHC and is practically unreachable at the Tevatron. We argue that, for some of these models to be compatible with the relic density, light sleptons with masses not far above the current limits are needed. There are, however, models that allow for larger sleptons masses without being in conflict with the relic density constraint. This is possible because these neutralinos can annihilate efficiently through a Z pole. We also find that many of these models can nicely account, at the 2σ level, for the discrepancy in the latest g−2 measurement. However, requiring consistency with the g−2 at the 1σ level, excludes models that lead to the largest Higgs branching fraction into LSP's. In all cases one expects that even though the Higgs might escape detection, one would have a rich SUSY phenomenology even at the Tevatron, through the production of charginos and neutralinos
Evaluation of the stability of substituted InF3 glasses by differential thermal analysis
Recommended from our members
The Higgs Working Group: Summary Report (2001)
Report of the Higgs working group for the Workshop `Physics at TeV
Colliders', Les Houches, France, 21 May - 1 June 2001. It contains 7 separate
sections: A. Theoretical Developments B. Higgs Searches at the Tevatron C.
Experimental Observation of an invisible Higgs Boson at LHC D. Search for the
Standard Model Higgs Boson using Vector Boson Fusion at the LHC E. Study of the
MSSM channel at the LHC F. Searching for Higgs Bosons in
Production G. Studies of Charged Higgs Boson Signals for the
Tevatron and the LH
