38 research outputs found

    The Use of Speech Technology in Foreign Language Pronunciation Training

    No full text
    In recent years the application of computer software to the learning process has been found to be an indisputably effective tool supporting the traditional teaching methods. Particular focus has been put on the application of techniques based on speech and language processing to the second language learning. Most of the commercial self-study programs, however, do not allow for introduction of an individualized learning course by the teacher and to concentrate on segmental features only. The paper discusses the use of speech technology in the training of foreign languages’ pronunciation and prosody and defines pedagogical requirements for an effective training with CAPT systems. In this context, steps taken in the development of the intelligent tutoring system AzAR3.0 (German ‘Automat for accent reduction’) in the scope of the Euronounce project (Cylwik et al., 2008) are described with the focus on creation of the linguistic content. In response to the European Union’s call for promoting less widely spoken languages, the project focuses on German as a target language for native speakers of Polish, Slovak, Czech, and Russian, and vice versa. The paper presents the design of the speech corpus for the purpose of the tutoring system and the analysis of pronunciation errors. The results of the latter provide information which is important for Automatic Speech Recognition (ASR) training on the one hand, and for automatic error detection and feedback generation on the other hand. In the end, Pitch Line software for implementation in the prosody visualization and training module of AzAR3.0 tutoring system is described

    Optimal mine pitwall profiles in jointed anisotropic rock masses

    No full text
    \ua9 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.A new methodology based on the limit analysis upper bound method for the topological optimisation of slopes is presented, to determine geotechnically optimal slope profiles in anisotropic jointed rock masses. The methodology accounts for the effects of discontinuities such as joints, bedding planes, and tension cracks. We applied this methodology to the context of open pit mines, with the goal of achieving geotechnically optimal pitwall profiles. The optimal profiles maximise the Overall Slope Angle (OSA) while maintaining a prescribed Factor of Safety (FoS) and satisfying the geometric constraints imposed by benches and ramps. The method, implemented in the software OptimalSlope, utilises direction-dependent cohesion and internal friction angle parameters to replicate the effect of joints on slope stability. Key inputs include joint orientation, non-persistence, and probability of occurrence. We tested the methodology on a Mexican open pit mine to be excavated into Cretaceous siltstone featuring eight different joint sets and a primary bedding plane. Optimal pitwall profiles were determined for various combinations of bedding dip angles (0\ub0, 15\ub0, 30\ub0, 45\ub0, 60\ub0, 75\ub0, 90\ub0) and mine pitwall orientations (hanging wall, footwall, side walls), considering the three-dimensional kinematics of the joints through anisotropic functions of cohesion and friction angle. Results indicate that the optimal pitwall profiles generally exhibit higher OSA compared to planar profiles with the same FoS, except in one bedding dip direction. Additionally, stability analyses performed using Rocscience Slide2 independently verified the FoS values of the optimal profiles
    corecore