9,946 research outputs found
Identifying and measuring patients' preferences and priorities for information in chronic kidney disease
Detailed Chemical Abundances in NGC 5824: Another Metal-Poor Globular Cluster with Internal Heavy Element Abundance Variations
We present radial velocities, stellar parameters, and detailed abundances of
39 elements derived from high-resolution spectroscopic observations of red
giant stars in the luminous, metal-poor globular cluster NGC 5824. We observe
26 stars in NGC 5824 using the Michigan/Magellan Fiber System (M2FS) and two
stars using the Magellan Inamori Kyocera Echelle (MIKE) spectrograph. We derive
a mean metallicity of [Fe/H]=-1.94+/-0.02 (statistical) +/-0.10 (systematic).
The metallicity dispersion of this sample of stars, 0.08 dex, is in agreement
with previous work and does not exceed the expected observational errors.
Previous work suggested an internal metallicity spread only when fainter
samples of stars were considered, so we cannot exclude the possibility of an
intrinsic metallicity dispersion in NGC 5824. The M2FS spectra reveal a large
internal dispersion in [Mg/Fe], 0.28 dex, which is found in a few other
luminous, metal-poor clusters. [Mg/Fe] is correlated with [O/Fe] and
anti-correlated with [Na/Fe] and [Al/Fe]. There is no evidence for internal
dispersion among the other alpha- or Fe-group abundance ratios. Twenty-five of
the 26 stars exhibit a n-capture enrichment pattern dominated by r-process
nucleosynthesis ([Eu/Fe]=+0.11+/-0.12; [Ba/Eu]=-0.66+/-0.05). Only one star
shows evidence of substantial s-process enhancement ([Ba/Fe]=+0.56+/-0.12;
[Ba/Eu]=+0.38+/-0.14), but this star does not exhibit other characteristics
associated with s-process enhancement via mass-transfer from a binary
companion. The Pb and other heavy elements produced by the s-process suggest a
timescale of no more than a few hundred Myr for star formation and chemical
enrichment, like the complex globular clusters M2, M22, and NGC 5286.Comment: Accepted for publication in MNRAS. (26 pages, 18 figures, 9 tables
including online data
Spectral characteristics of normal and nutrient-deficient maize leaves
Reflectance, transmittance and absorbance spectra of normal and six types of mineral-deficient (N,P,K,S,Mg and Ca) maize (Zea mays L.) leaves were analyzed at 30 selected wavelengths along the electromagnetic spectrum from 500 to 2600 nm. Chlorophyll content and percent leaf moisture were also determined. Leaf thermograms were obtained for normal, N- and S- deficient leaves. The results of the analysis of variance showed significant differences in reflectance, transmittance and absorbance in the visible wavelengths among leaf numbers 3, 4, and 5, among the seven nutrient treatments, and among the interactions of leaves and treatments. In the reflective infrared wavelengths only treatments produced significant differences. The chlorophyll content of leaves was reduced in all deficiencies in comparison to controls. Percent moisture was increased in S-, Mg- and N- deficiencies. Positive correlation (r = 0.707) between moisture content and percent absorption at both 1450 and 1930 nm were obtained. Polynomial regression analysis of leaf thickness and leaf moisture content showed that these two variables were significantly and directly related (r = 0.894)
NGC 1866: First Spectroscopic Detection of Fast Rotating Stars in a Young LMC Cluster
High-resolution spectroscopic observations were taken of 29 extended main
sequence turn-off (eMSTO) stars in the young (200 Myr) LMC cluster, NGC
1866 using the Michigan/Magellan Fiber System and MSpec spectrograph on the
Magellan-Clay 6.5-m telescope. These spectra reveal the first direct detection
of rapidly rotating stars whose presence has only been inferred from
photometric studies. The eMSTO stars exhibit H-alpha emission (indicative of
Be-star decretion disks), others have shallow broad H-alpha absorption
(consistent with rotation 150 km s), or deep H-alpha core
absorption signaling lower rotation velocities (150 km s ).
The spectra appear consistent with two populations of stars - one rapidly
rotating, and the other, younger and slowly rotating.Comment: 9 pages, 4 figures, Accepted for publication in ApJ Letter
4-Dimensional BF Theory as a Topological Quantum Field Theory
Starting from a Lie group G whose Lie algebra is equipped with an invariant
nondegenerate symmetric bilinear form, we show that 4-dimensional BF theory
with cosmological term gives rise to a TQFT satisfying a generalization of
Atiyah's axioms to manifolds equipped with principal G-bundle. The case G =
GL(4,R) is especially interesting because every 4-manifold is then naturally
equipped with a principal G-bundle, namely its frame bundle. In this case, the
partition function of a compact oriented 4-manifold is the exponential of its
signature, and the resulting TQFT is isomorphic to that constructed by Crane
and Yetter using a state sum model, or by Broda using a surgery presentation of
4-manifolds.Comment: 15 pages in LaTe
Sorption and fractionation of rare earth element ions onto nanoscale zerovalent iron particles
The removal behaviour of rare earth element (REE), (Sc, Y, La-Lu), ions onto nanoscale zerovalent iron (nZVI) particles has been investigated. Batch sorption isotherms were conducted using REE-bearing acid mine drainage (AMD) and a range of different synthetic REE solutions, which were exposed to nZVI at 0.1-4.0 g/L. Maximum adsorption capacity of Yb and La was 410 and 61 mg/g respectively (1000 mg/L LaCl3 and YbCl3 starting concentration, initial pH=4.5, T=294 K), the highest currently reported in the literature. Aqueous REE removal to ultratrace concentrations (99.9% removal) was also recorded after 30 min (the first sampling interval) exposure of ≥0.5 g/L nZVI to 10 mg/L aqueous REE solutions (nitrate counterion). Similar rapidity and near-total removal ability was recorded for the exposure of nZVI to the AMD, however, a greater nZVI concentration was required, with the removal of all REEs (with the exception of La, Ce, Nd and Gd) to <1 µg/L when exposed to nZVI at 4.0g/L for 30 mins. In all systems nZVI was selective for the removal of HREE ions in preference to LREE ions, with the mechanism determined using HRTEM-EDS and XPS analysis as via surface mediated precipitation. Overall the results demonstrate nZVI as exhibiting great promise as an effective and versatile agent for simultaneous REE ion recovery and fractionation
Spin Foam Models of Matter Coupled to Gravity
We construct a class of spin foam models describing matter coupled to
gravity, such that the gravitational sector is described by the unitary
irreducible representations of the appropriate symmetry group, while the matter
sector is described by the finite-dimensional irreducible representations of
that group. The corresponding spin foam amplitudes in the four-dimensional
gravity case are expressed in terms of the spin network amplitudes for
pentagrams with additional external and internal matter edges. We also give a
quantum field theory formulation of the model, where the matter degrees of
freedom are described by spin network fields carrying the indices from the
appropriate group representation. In the non-topological Lorentzian gravity
case, we argue that the matter representations should be appropriate SO(3) or
SO(2) representations contained in a given Lorentz matter representation,
depending on whether one wants to describe a massive or a massless matter
field. The corresponding spin network amplitudes are given as multiple
integrals of propagators which are matrix spherical functions.Comment: 30 pages, 9 figures, further remarks and references added. Version to
appear in Class. Quant. Gra
Selective formation of copper nanoparticles from acid mine drainage using nanoscale zerovalent iron particles
Nanoscale zerovalent iron (nZVI) has been investigated for the selective formation of Cu nanoparticles from acid mine drainage (AMD) taken from a legacy mine site in the UK. Batch experiments were conducted containing unbuffered (pH 2.67 at t=0) and pH buffered (pH 99.9% removal of all metals within 1 h when nZVI ≥1.0 g/L) from unbuffered AMD despite the coexistent of numerous other metals in the AMD, namely: Na, Ca, Mg, K, Mn and Zn. An acidic pH buffer enabled similarly high Cu removal but maximum removal of only <1.5% and <0.5% Cd and Al respectively. HRTEM-EDS confirmed the formation of discrete spherical nanoparticles comprised of up to 68% wt. Cu, with a relatively narrow size distribution (typically 20-100 nm diameter). XPS confirmed such nanoparticles as containing Cu0 , with the Cu removal mechanism therefore likely via cementation with Fe0 . Overall the results demonstrate nZVI as effective for the one-pot and selective formation of Cu0 -bearing nanoparticles from acidic wastewater, with the technique therefore potentially highly useful for the selective upcycling of dissolved Cu in wastewater into high value nanomaterials
- …
