543 research outputs found
The effect of castanospermine on the oligosaccharide structures of glycoproteins from lymphoma cell lines
An ACACB Variant Implicated in Diabetic Nephropathy Associates with Body Mass Index and Gene Expression in Obese Subjects
published_or_final_versio
Genetic influences on the insulin response of the beta cell to different secretagogues
Aims/hypothesis: The aim of the present study was to estimate the heritability of the beta cell insulin response to glucose and to glucose combined with glucagon-like peptide-1 (GLP-1) or with GLP-1 plus arginine. Methods: This was a twin-family study that included 54 families from the Netherlands Twin Register. The participants were healthy twin pairs and their siblings of the same sex, aged 20 to 50 years. Insulin response of the beta cell was assessed by a modified hyperglycaemic clamp with additional GLP-1 and arginine. Insulin sensitivity index (ISI) was assessed by the euglycaemic-hyperinsulinaemic clamp. Multivariate structural equation modelling was used to obtain heritabilities and the genetic factors underlying individual differences in BMI, ISI and secretory responses of the beta cell. Results: The heritability of insulin levels in response to glucose was 52% and 77% for the first and second phase, respectively, 53% in response to glucose+GLP-1 and 80% in response to an additional arginine bolus. Insulin responses to the administration of glucose, glucose+GLP-1 and glucose+GLP-1+arginine were highly correlated (0.62<r<0.79). Heritability of BMI and ISI was 74% and 60% respectively. The genetic factors that influenced BMI and ISI explained about half of the heritability of insulin levels in response to the three secretagogues. The other half was due to genetic factors specific to the beta cell. Conclusions/interpretation: In healthy adults, genetic factors explain most of the individual differences in the secretory capacity of the beta cell. These genetic influences are partly independent from the genes that influence BMI and ISI. © 2009 Springer-Verlag
Genome-wide association and meta-analysis in populations from Starr County, Texas, and Mexico City identify type 2 diabetes susceptibility loci and enrichment for expression quantitative trait loci in top signals
AIMS/HYPOTHESIS: We conducted genome-wide association studies (GWASs) and expression quantitative trait loci (eQTL) analyses to identify and characterise risk loci for type 2 diabetes in Mexican-Americans from Starr County, TX, USA. METHOD: Using 1.8 million directly interrogated and imputed genotypes in 837 unrelated type 2 diabetes cases and 436 normoglycaemic controls, we conducted Armitage trend tests. To improve power in this population with high disease rates, we also performed ordinal regression including an intermediate class with impaired fasting glucose and/or glucose tolerance. These analyses were followed by meta-analysis with a study of 967 type 2 diabetes cases and 343 normoglycaemic controls from Mexico City, Mexico. RESULT: The top signals (unadjusted p value <1×10(−5)) included 49 single nucleotide polymorphisms (SNPs) in eight gene regions (PER3, PARD3B, EPHA4, TOMM7, PTPRD, HNT [also known as RREB1], LOC729993 and IL34) and six intergenic regions. Among these was a missense polymorphism (rs10462020; Gly639Val) in the clock gene PER3, a system recently implicated in diabetes. We also report a second signal (minimum p value 1.52× 10(−6)) within PTPRD, independent of the previously implicated SNP, in a population of Han Chinese. Top meta-analysis signals included known regions HNF1A and KCNQ1. Annotation of top association signals in both studies revealed a marked excess of trans-acting eQTL in both adipose and muscle tissues. CONCLUSIONS/INTERPRETATION: In the largest study of type 2 diabetes in Mexican populations to date, we identified modest associations of novel and previously reported SNPs. In addition, in our top signals we report significant excess of SNPs that predict transcript levels in muscle and adipose tissues
Castanospermine inhibits glucosidase I and glycoprotein secretion in human hepatoma cells
Analysis of coding variants in the betacellulin gene in type 2 diabetes and insulin secretion in African American subjects
BACKGROUND: Betacellulin is a member of the epidermal growth factor family, expressed at the highest levels predominantly in the pancreas and thought to be involved in islet neogenesis and regeneration. Nonsynonymous coding variants were reported to be associated with type 2 diabetes in African American subjects. We tested the hypotheses that these previously identified variants were associated with type 2 diabetes in African Americans ascertained in Arkansas and that they altered insulin secretion in glucose tolerant African American subjects. METHODS: We typed three variants, exon1 Cys7Gly (C7G), exon 2 Leu44Phe (L44F), and exon 4 Leu124Met (L124M), in 188 control subjects and 364 subjects with type 2 diabetes. We tested for altered insulin secretion in 107 subjects who had undergone intravenous glucose tolerance tests to assess insulin sensitivity and insulin secretion. RESULTS: No variant was associated with type 2 diabetes, and no variant altered insulin secretion or insulin sensitivity. However, an effect on lipids was observed for all 3 variants, and variant L124M was associated with obesity measures. CONCLUSION: We were unable to confirm a role for nonsynonymous variants of betacellulin in the propensity to type 2 diabetes or to impaired insulin secretion
Genome-Wide Linkage Scan for Genes Influencing Plasma Triglyceride Levels in the Veterans Administration Genetic Epidemiology Study
OBJECTIVE—Elevated plasma triglyceride concentration is a component of the insulin resistance syndrome and is commonly associated with type 2 diabetes, obesity, and coronary heart disease. The goal of our study was to perform a genome-wide linkage scan to identify genetic regions that influence variation in plasma triglyceride levels in families that are enriched with individuals with type 2 diabetes
- …
