3,839 research outputs found
Wireless recording of the calls of Rousettus aegyptiacus and their reproduction using electrostatic transducers
Bats are capable of imaging their surroundings in great detail using echolocation. To apply similar methods to human engineering systems requires the capability to measure and recreate the signals used, and to understand the processing applied to returning echoes. In this work, the emitted and reflected echolocation signals of Rousettus aegyptiacus are recorded while the bat is in flight, using a wireless sensor mounted on the bat. The sensor is designed to replicate the acoustic gain control which bats are known to use, applying a gain to returning echoes that is dependent on the incurred time delay. Employing this technique allows emitted and reflected echolocation calls, which have a wide dynamic range, to be recorded. The recorded echoes demonstrate the complexity of environment reconstruction using echolocation. The sensor is also used to make accurate recordings of the emitted calls, and these calls are recreated in the laboratory using custom-built wideband electrostatic transducers, allied with a spectral equalization technique. This technique is further demonstrated by recreating multi-harmonic bioinspired FM chirps. The ability to record and accurately synthesize echolocation calls enables the exploitation of biological signals in human engineering systems for sonar, materials characterization and imaging
Age of second language acquisition affects nonverbal conflict processing in children : an fMRI study
Background: In their daily communication, bilinguals switch between two languages, a process that involves the selection of a target language and minimization of interference from a nontarget language. Previous studies have uncovered the neural structure in bilinguals and the activation patterns associated with performing verbal conflict tasks. One question that remains, however is whether this extra verbal switching affects brain function during nonverbal conflict tasks.
Methods: In this study, we have used fMRI to investigate the impact of bilingualism in children performing two nonverbal tasks involving stimulus-stimulus and stimulus-response conflicts. Three groups of 8-11-year-old children - bilinguals from birth (2L1), second language learners (L2L), and a control group of monolinguals (1L1) - were scanned while performing a color Simon and a numerical Stroop task. Reaction times and accuracy were logged.
Results: Compared to monolingual controls, bilingual children showed higher behavioral congruency effect of these tasks, which is matched by the recruitment of brain regions that are generally used in general cognitive control, language processing or to solve language conflict situations in bilinguals (caudate nucleus, posterior cingulate gyrus, STG, precuneus). Further, the activation of these areas was found to be higher in 2L1 compared to L2L.
Conclusion: The coupling of longer reaction times to the recruitment of extra language-related brain areas supports the hypothesis that when dealing with language conflicts the specialization of bilinguals hampers the way they can process with nonverbal conflicts, at least at early stages in life
Spacelike distance from discrete causal order
Any discrete approach to quantum gravity must provide some prescription as to
how to deduce continuum properties from the discrete substructure. In the
causal set approach it is straightforward to deduce timelike distances, but
surprisingly difficult to extract spacelike distances, because of the unique
combination of discreteness with local Lorentz invariance in that approach. We
propose a number of methods to overcome this difficulty, one of which
reproduces the spatial distance between two points in a finite region of
Minkowski space. We provide numerical evidence that this definition can be used
to define a `spatial nearest neighbor' relation on a causal set, and conjecture
that this can be exploited to define the length of `continuous curves' in
causal sets which are approximated by curved spacetime. This provides evidence
in support of the ``Hauptvermutung'' of causal sets.Comment: 32 pages, 16 figures, revtex4; journal versio
A Bell Inequality Analog in Quantum Measure Theory
One obtains Bell's inequalities if one posits a hypothetical joint
probability distribution, or {\it measure}, whose marginals yield the
probabilities produced by the spin measurements in question. The existence of a
joint measure is in turn equivalent to a certain causality condition known as
``screening off''. We show that if one assumes, more generally, a joint {\it
quantal measure}, or ``decoherence functional'', one obtains instead an
analogous inequality weaker by a factor of . The proof of this
``Tsirel'son inequality'' is geometrical and rests on the possibility of
associating a Hilbert space to any strongly positive quantal measure. These
results lead both to a {\it question}: ``Does a joint measure follow from some
quantal analog of `screening off'?'', and to the {\it observation} that
non-contextual hidden variables are viable in histories-based quantum
mechanics, even if they are excluded classically.Comment: 38 pages, TeX. Several changes and added comments to bring out the
meaning more clearly. Minor rewording and extra acknowledgements, now closer
to published versio
Spatial Hypersurfaces in Causal Set Cosmology
Within the causal set approach to quantum gravity, a discrete analog of a
spacelike region is a set of unrelated elements, or an antichain. In the
continuum approximation of the theory, a moment-of-time hypersurface is well
represented by an inextendible antichain. We construct a richer structure
corresponding to a thickening of this antichain containing non-trivial
geometric and topological information. We find that covariant observables can
be associated with such thickened antichains and transitions between them, in
classical stochastic growth models of causal sets. This construction highlights
the difference between the covariant measure on causal set cosmology and the
standard sum-over-histories approach: the measure is assigned to completed
histories rather than to histories on a restricted spacetime region. The
resulting re-phrasing of the sum-over-histories may be fruitful in other
approaches to quantum gravity.Comment: Revtex, 12 pages, 2 figure
Simulating causal collapse models
We present simulations of causal dynamical collapse models of field theories
on a 1+1 null lattice. We use our simulations to compare and contrast two
possible interpretations of the models, one in which the field values are real
and the other in which the state vector is real. We suggest that a procedure of
coarse graining and renormalising the fundamental field can overcome its
noisiness and argue that this coarse grained renormalised field will show
interesting structure if the state vector does on the coarse grained scale.Comment: 18 pages, 8 fugures, LaTeX, Reference added, discussion of
probability distribution of labellings correcte
Fast Optimal Transport Averaging of Neuroimaging Data
Knowing how the Human brain is anatomically and functionally organized at the
level of a group of healthy individuals or patients is the primary goal of
neuroimaging research. Yet computing an average of brain imaging data defined
over a voxel grid or a triangulation remains a challenge. Data are large, the
geometry of the brain is complex and the between subjects variability leads to
spatially or temporally non-overlapping effects of interest. To address the
problem of variability, data are commonly smoothed before group linear
averaging. In this work we build on ideas originally introduced by Kantorovich
to propose a new algorithm that can average efficiently non-normalized data
defined over arbitrary discrete domains using transportation metrics. We show
how Kantorovich means can be linked to Wasserstein barycenters in order to take
advantage of an entropic smoothing approach. It leads to a smooth convex
optimization problem and an algorithm with strong convergence guarantees. We
illustrate the versatility of this tool and its empirical behavior on
functional neuroimaging data, functional MRI and magnetoencephalography (MEG)
source estimates, defined on voxel grids and triangulations of the folded
cortical surface.Comment: Information Processing in Medical Imaging (IPMI), Jun 2015, Isle of
Skye, United Kingdom. Springer, 201
The structure of causal sets
More often than not, recently popular structuralist interpretations of
physical theories leave the central concept of a structure insufficiently
precisified. The incipient causal sets approach to quantum gravity offers a
paradigmatic case of a physical theory predestined to be interpreted in
structuralist terms. It is shown how employing structuralism lends itself to a
natural interpretation of the physical meaning of causal sets theory.
Conversely, the conceptually exceptionally clear case of causal sets is used as
a foil to illustrate how a mathematically informed rigorous conceptualization
of structure serves to identify structures in physical theories. Furthermore, a
number of technical issues infesting structuralist interpretations of physical
theories such as difficulties with grounding the identity of the places of
highly symmetrical physical structures in their relational profile and what may
resolve these difficulties can be vividly illustrated with causal sets.Comment: 19 pages, 4 figure
- …
