27,786 research outputs found

    Dynamic stability of a flexible booster subjected to a gimbled, periodically-varying end thrust Technical memorandum no. 104

    Get PDF
    Dynamic structural behavior of large rocket booster synthesized by two thin-walled cylinders and subjected to periodically varying end thrus

    Suppression of spin-pumping by a MgO tunnel-barrier

    Full text link
    Spin-pumping generates pure spin currents in normal metals at the ferromagnet (F)/normal metal (N) interface. The efficiency of spin-pumping is given by the spin mixing conductance, which depends on N and the F/N interface. We directly study the spin-pumping through an MgO tunnel-barrier using the inverse spin Hall effect, which couples spin and charge currents and provides a direct electrical detection of spin currents in the normal metal. We find that spin-pumping is suppressed by the tunnel-barrier, which is contrary to recent studies that suggest that the spin mixing conductance can be enhanced by a tunnel-barrier inserted at the interface

    Voltage-Controlled Superconducting Quantum Bus

    Full text link
    We demonstrate the ability of an epitaxial semiconductor-superconductor nanowire to serve as a field-effect switch to tune a superconducting cavity. Two superconducting gatemon qubits are coupled to the cavity, which acts as a quantum bus. Using a gate voltage to control the superconducting switch yields up to a factor of 8 change in qubit-qubit coupling between the on and off states without detrimental effect on qubit coherence. High-bandwidth operation of the coupling switch on nanosecond timescales degrades qubit coherence

    Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers

    Full text link
    Spin pumping is a mechanism that generates spin currents from ferromagnetic resonance (FMR) over macroscopic interfacial areas, thereby enabling sensitive detection of the inverse spin Hall effect that transforms spin into charge currents in non-magnetic conductors. Here we study the spin-pumping-induced voltages due to the inverse spin Hall effect in permalloy/normal metal bilayers integrated into coplanar waveguides for different normal metals and as a function of angle of the applied magnetic field direction, as well as microwave frequency and power. We find good agreement between experimental data and a theoretical model that includes contributions from anisotropic magnetoresistance (AMR) and inverse spin Hall effect (ISHE). The analysis provides consistent results over a wide range of experimental conditions as long as the precise magnetization trajectory is taken into account. The spin Hall angles for Pt, Pd, Au and Mo were determined with high precision to be 0.013±0.0020.013\pm0.002, 0.0064±0.0010.0064\pm0.001, 0.0035±0.00030.0035\pm0.0003 and 0.0005±0.0001-0.0005\pm0.0001, respectively.Comment: 11 page

    Spectroscopy of 50^{50}Sc and ab initio calculations of B(M3)B(M3) strengths

    Full text link
    The GRIFFIN spectrometer at TRIUMF-ISAC has been used to study excited states and transitions in 50^{50}Sc following the β\beta-decay of 50^{50}Ca. Branching ratios were determined from the measured γ\gamma-ray intensities, and angular correlations of γ\gamma rays have been used to firmly assign the spins of excited states. The presence of an isomeric state that decays by an M3M3 transition with a B(M3)B(M3) strength of 13.6(7)\,W.u. has been confirmed. We compare with the first {\it ab initio} calculations of B(M3B(M3) strengths in light and medium-mass nuclei from the valence-space in-medium similarity renormalization group approach, using consistently derived effective Hamiltonians and M3M3 operator. The experimental data are well reproduced for isoscalar M3M3 transitions when using bare gg-factors, but the strength of isovector M3M3 transitions are found to be underestimated by an order of magnitude

    Terahertz frequency receiver instrumentation for Herschel's heterodyne instrument for far infrared (HIFI)

    Get PDF
    The Heterodyne Instrument for Far Infrared (HIFI) on ESA's Herschel Space Observatory is comprised of five SIS receiver channels covering 480-1250 GHz and two HEB receiver channels covering 1410-1910 GHz. Two fixed tuned local oscillator sub-bands are derived from a common synthesizer to provide the front-end frequency coverage for each channel. The local oscillator unti will be passively cooled while the focal plane unit is cooled by superfluid helium and cold helium vapors. HIFI employs W-band GaAs amplifiers, InP HEMT low noise IF amplifiers, fixed tuned broadband planar diode multipliers, and novel material systems in the SIS mixtures. The National Aeronautics and Space Administration's Jet Propulsion Laboratory is managing the development of the highest frequency (1119-1250 GHz) SIS mixers, the highest frequency (1650-1910 GHz) HEB mixers, local oscillators for the three highest frequency receivers as well as W-band power amplifiers, varactor diode devices for all high frequency multipliers and InP HEMT components for all the receiver channels intermediate frequency amplifiers. The NASA developed components represent a significant advancement in the available performance. The current state of the art for each of these devices is presented along with a programmatic view of the development effort
    corecore