1,705 research outputs found
Rapid dissemination of human T-lymphotropic virus type 1 during primary infection in transplant recipients
Spinoza
"Spinoza", second edition.
Encyclopedia entry for the Springer Encyclopedia of EM Phil and the Sciences, ed. D. Jalobeanu and C. T. Wolfe
Plasmonically Enhanced Reflectance of Heat Radiation from Low-Bandgap Semiconductor Microinclusions
Increased reflectance from the inclusion of highly scattering particles at
low volume fractions in an insulating dielectric offers a promising way to
reduce radiative thermal losses at high temperatures. Here, we investigate
plasmonic resonance driven enhanced scattering from microinclusions of
low-bandgap semiconductors (InP, Si, Ge, PbS, InAs and Te) in an insulating
composite to tailor its infrared reflectance for minimizing thermal losses from
radiative transfer. To this end, we compute the spectral properties of the
microcomposites using Monte Carlo modeling and compare them with results from
Fresnel equations. The role of particle size-dependent Mie scattering and
absorption efficiencies, and, scattering anisotropy are studied to identify the
optimal microinclusion size and material parameters for maximizing the
reflectance of the thermal radiation. For composites with Si and Ge
microinclusions we obtain reflectance efficiencies of 57 - 65% for the incident
blackbody radiation from sources at temperatures in the range 400 - 1600
{\deg}C. Furthermore, we observe a broadbanding of the reflectance spectra from
the plasmonic resonances due to charge carriers generated from defect states
within the semiconductor bandgap. Our results thus open up the possibility of
developing efficient high-temperature thermal insulators through use of the
low-bandgap semiconductor microinclusions in insulating dielectrics.Comment: Main article (8 Figures and 2 Tables) + Supporting Information (8
Figures
Non-Equilibrium Statistical Physics of Currents in Queuing Networks
We consider a stable open queuing network as a steady non-equilibrium system
of interacting particles. The network is completely specified by its underlying
graphical structure, type of interaction at each node, and the Markovian
transition rates between nodes. For such systems, we ask the question ``What is
the most likely way for large currents to accumulate over time in a network
?'', where time is large compared to the system correlation time scale. We
identify two interesting regimes. In the first regime, in which the
accumulation of currents over time exceeds the expected value by a small to
moderate amount (moderate large deviation), we find that the large-deviation
distribution of currents is universal (independent of the interaction details),
and there is no long-time and averaged over time accumulation of particles
(condensation) at any nodes. In the second regime, in which the accumulation of
currents over time exceeds the expected value by a large amount (severe large
deviation), we find that the large-deviation current distribution is sensitive
to interaction details, and there is a long-time accumulation of particles
(condensation) at some nodes. The transition between the two regimes can be
described as a dynamical second order phase transition. We illustrate these
ideas using the simple, yet non-trivial, example of a single node with
feedback.Comment: 26 pages, 5 figure
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
The power of pictures: Vertical picture angles in power pictures
Abstract:
Conventional wisdom suggests that variations in vertical picture angle cause the subject to appear more powerful when depicted from below and less powerful when depicted from above. However, do the media actually use such associations to represent individual differences in power? We argue that the diverse perspectives of evolutionary, social learning, and embodiment theories all suggest that the association between verticality and power is relatively automatic and should, therefore, be visible in the portrayal of powerful and powerless individuals in the media. Four archival studies (with six samples) provide empirical evidence for this hypothesis and indicate that a salience power context reinforces this effect. In addition, two experimental studies confirm these effects for individuals producing media content. We discuss potential implications of this effect
Synthesis and characterization of high-affinity 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-labeled fluorescent ligands for human β-adrenoceptors
The growing practice of exploiting noninvasive fluorescence-based techniques to study G protein-coupled receptor pharmacology at the single cell and single molecule level demands the availability of high-quality fluorescent ligands. To this end, this study evaluated a new series of red-emitting ligands for the human β-adrenoceptor family. Upon the basis of the orthosteric ligands propranolol, alprenolol, and pindolol, the synthesized linker-modified congeners were coupled to the commercially available fluorophore BODIPY 630/650-X. This yielded high-affinity β-adrenoceptor fluorescent ligands for both the propranolol and alprenolol derivatives; however, the pindolol-based products displayed lower affinity. A fluorescent diethylene glycol linked propranolol derivative (18a) had the highest affinity (log KD of -9.53 and -8.46 as an antagonist of functional β2- and β1-mediated responses, respectively). Imaging studies with this compound further confirmed that it can be employed to selectively label the human β2-adrenoceptor in single living cells, with receptor-associated binding prevented by preincubation with the nonfluorescent β2-selective antagonist 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]-butan-2-ol (ICI 118551) (J. Cardiovasc. Pharmacol. 1983, 5, 430-437.
- …
