9,994 research outputs found
Cardiovascular disease and air pollution in Scotland: no association or insufficient data and study design?
<p><b>Background:</b>
Coronary heart disease and stroke are leading causes of mortality and ill health in Scotland, and clear associations have been found in previous studies between air pollution and cardiovascular disease. This study aimed to use routinely available data to examine whether there is any evidence of an association between short-term exposure to particulate matter (measured as PM10, particles less than 10 micrograms per cubic metre) and hospital admissions due to cardiovascular disease, in the two largest cities in Scotland during the years 2000 to 2006.</p>
<p><b>Methods:</b> The study utilised an ecological time series design, and the analysis was based on overdispersed Poisson log-linear models.</p>
<p><b>Results:</b> No consistent associations were found between PM10 concentrations and cardiovascular hospital admissions in either of the cities studied, as all of the estimated relative risks were close to one, and all but one of the associated 95% confidence intervals contained the null risk of one.</p>
<p><b>Conclusions:</b> This study suggests that in small cities, where air quality is relatively good, then either PM10 concentrations have no effect on cardiovascular ill health, or that the routinely available data and the corresponding study design are not sufficient to detect an association.</p>
RAT0455+1305: another pulsating hybrid sdB star
RAT0455+1305 was discovered during the Rapid Temporal Survey which aims in
finding any variability on timescales of a few minutes to several hours. The
star was found to be another sdBV star with one high amplitude mode and
relatively long period. These features along with estimation of T_eff and log g
makes this star very similar to Balloon 090100001. Encouraged by prominent
results obtained for the latter star we have decided to perform white light
photometry on RAT0455+1305. In 2009 we used the 1.5m telescope located in San
Pedro Martir Observatory in Mexico. Fourier analysis confirmed the dominant
mode found in the discovery data, uncovered another peak close to the dominant
one, and three peaks in the low frequency region. This shows that RAT0455+1305
is another hybrid sdBV star pulsating in both p- and g-modes.Comment: Proceedings of The Fourth Meeting on Hot Subdwarf Stars and Related
Objects held in China, 20-24 July 2009. Accepted for publication in
Astrophysics & Space Scienc
The Three Dimensional Structure of EUV Accretion Regions in AM Herculis Stars: Modeling of EUV Photometric and Spectroscopic Observations
We have developed a model of the high-energy accretion region for magnetic
cataclysmic variables and applied it to {\it Extreme Ultraviolet Explorer}
observations of 10 AM Herculis type systems. The major features of the EUV
light curves are well described by the model. The light curves exhibit a large
variety of features such as eclipses of the accretion region by the secondary
star and the accretion stream, and dips caused by material very close to the
accretion region. While all the observed features of the light curves are
highly dependent on viewing geometry, none of the light curves are consistent
with a flat, circular accretion spot whose lightcurve would vary solely from
projection effects. The accretion region immediately above the WD surface is a
source of EUV radiation caused by either a vertical extent to the accretion
spot, or Compton scattering off electrons in the accretion column, or, very
likely, both. Our model yields spot sizes averaging 0.06 R, or the WD surface area, and average spot heights of 0.023
R. Spectra extracted during broad dip phases are softer than spectra
during the out-of-dip phases. This spectral ratio measurement leads to the
conclusion that Compton scattering, some absorption by a warm absorber,
geometric effects, an asymmetric temperature structure in the accretion region
and an asymmetric density structure of the accretion columnare all important
components needed to fully explain the data. Spectra extracted at phases where
the accretion spot is hidden behind the limb of the WD, but with the accretion
column immediately above the spot still visible, show no evidence of emission
features characteristic of a hot plasma.Comment: 30 Pages, 11 Figure
Long slit spectroscopy of NH2 in comets Halley, Wilson, and Nishikawa-Takamizawa-Tago
Long-slit spectra of comets Halley, Wilson and Nishikawa-Takamizawa-Tago were obtained with the 3.9 meter Anglo-Australian Telescope. Spectra of comets Halley and Wilson were obtained with the IPCS at a spectral resolution of 0.5 A and a spatial resolution of 10(exp 3) km. Spectra of comets Wilson and Nishikawa-Takamizawa-Tago were obtained with a CCD at a spectral resolution of 1.5 A and a spatial resolution of approximately 3 x 10(exp 3) km. Surface brightness profiles for NH2 were extracted from the long-slit spectra of each comet. The observed surface brightness profiles extend along the slit to approximately 6 x 10(exp 4) km from the nucleus in both sunward and tailward directions. By comparing surface distribution calculated from an appropriate coma model with observed surface brightness distributions, the photodissociation timescale of the parent molecule of NH2 can be inferred. The observed NH2 surface brightness profiles in all three comets compares well with a surface brightness profile calculated using the vectorial model, an NH3 photodissociation timescale of 7 x 10(exp 3) seconds, and an NH2 photodissociation timescale of 34,000 seconds
The Ratio of Ortho- to Para-H2 in Photodissociation Regions
We discuss the ratio of ortho- to para-H2 in photodissociation regions
(PDRs). We draw attention to an apparent confusion in the literature between
the ortho-to-para ratio of molecules in FUV-pumped vibrationally excited
states, and the H2 ortho-to-para abundance ratio. These ratios are not the same
because the process of FUV-pumping of fluorescent H2 emission in PDRs occurs
via optically thick absorption lines. Thus, gas with an equilibrium ratio of
ortho- to para-H2 equal to 3 will yield FUV-pumped vibrationally excited
ortho-to-para ratios smaller than 3, because the ortho-H2 pumping rates are
preferentially reduced by optical depth effects. Indeed, if the ortho and para
pumping lines are on the ``square root'' part of the curve-of-growth, then the
expected ratio of ortho and para vibrational line strengths is the square root
of 3, ~ 1.7, close to the typically observed value. Thus, contrary to what has
sometimes been stated in the literature, most previous measurements of the
ratio of ortho- to para-H2 in vibrationally excited states are entirely
consistent with a total ortho-to-para ratio of 3, the equilibrium value for
temperatures greater than 200 K. We present an analysis and several detailed
models which illustrate the relationship between the total ratios of ortho- to
para-H2 and the vibrationally excited ortho-to-para ratios in PDRs. Recent
Infrared Space Observatory (ISO) measurements of pure rotational and
vibrational H2 emissions from the PDR in the star-forming region S140 provide
strong observational support for our conclusions.Comment: 23 pages (including 5 figures), LaTeX, uses aaspp4.sty, accepted for
publication in Ap
Feedback from massive stars at low metallicities : MUSE observations of N44 and N180 in the Large Magellanic Cloud
Accepted for publication in MNRAS, 27 pages, 21 figuresWe present MUSE integral field data of two HII region complexes in the Large Magellanic Cloud (LMC), N44 and N180. Both regions consist of a main superbubble and a number of smaller, more compact HII regions that formed on the edge of the superbubble. For a total of 11 HII regions, we systematically analyse the radiative and mechanical feedback from the massive O-type stars on the surrounding gas. We exploit the integral field property of the data and the coverage of the HeII5412 line to identify and classify the feedback-driving massive stars, and from the estimated spectral types and luminosity classes we determine the stellar radiative output in terms of the ionising photon flux . We characterise the HII regions in terms of their sizes, morphologies, ionisation structure, luminosity and kinematics, and derive oxygen abundances via emission line ratios. We analyse the role of different stellar feedback mechanisms for each region by measuring the direct radiation pressure, the pressure of the ionised gas, and the pressure of the shock-heated winds. We find that stellar winds and ionised gas are the main drivers of HII region expansion in our sample, while the direct radiation pressure is up to three orders of magnitude lower than the other terms. We relate the total pressure to the star formation rate per unit area, , for each region and find that stellar feedback has a negative effect on star formation, and sets an upper limit to as a function of increasing pressure.Peer reviewe
Quadratic reheating
The reheating process for the inflationary scenario is investigated
phenomenologically. The decay of the oscillating massive inflaton field into
light bosons is modeled after an out of equilibrium mixture of interacting
fluids within the framework of irreversible thermodynamics. Self-consistent,
analytic results for the evolution of the main macroscopic magnitudes like
temperature and particle number densities are obtained. The models for linear
and quadratic decay rates are investigated in the quasiperfect regime. The
linear model is shown to reheat very slowly while the quadratic one is shown to
yield explosive particle and entropy production. The maximum reheating
temperature is reached much faster and its magnitude is comparable with the
inflaton mass.Comment: 21 pages, LaTeX 2.09, 4 figures. To be published in International
Journal of Modern Physics
RAT J0455+1305: A rare hybrid pulsating subdwarf B star
We present results on the second-faintest pulsating subdwarf B (sdB) star
known, RAT J0455+1305, derived from photometric data obtained in 2009. It shows
both short and long periods oscillations, theoretically assigned as pressure
and gravity modes. We identify six short-period frequencies (with one being a
combination) and six long-period frequencies. This star is the fourth hybrid
sdB star discovered so far which makes it of special interest as each type of
mode probes a different part of the star. This star is similar to the sdB
hybrid pulsator Balloon 090100001 in that it exhibits short-period mode
groupings, which can be used to identify pulsation parameters and constrain
theoretical models.Comment: published in MNRA
An Optimal Linear Time Algorithm for Quasi-Monotonic Segmentation
Monotonicity is a simple yet significant qualitative characteristic. We
consider the problem of segmenting a sequence in up to K segments. We want
segments to be as monotonic as possible and to alternate signs. We propose a
quality metric for this problem using the l_inf norm, and we present an optimal
linear time algorithm based on novel formalism. Moreover, given a
precomputation in time O(n log n) consisting of a labeling of all extrema, we
compute any optimal segmentation in constant time. We compare experimentally
its performance to two piecewise linear segmentation heuristics (top-down and
bottom-up). We show that our algorithm is faster and more accurate.
Applications include pattern recognition and qualitative modeling.Comment: This is the extended version of our ICDM'05 paper (arXiv:cs/0702142
- …
