3,494 research outputs found
Further evidence for intra-night optical variability of radio-quiet quasars
Although well established for BL Lac objects and radio-loud quasars, the
occurrence of intra-night optical variability (INOV) in radio-quiet quasars is
still debated, primarily since only a handful of INOV events with good
statistical significance, albeit small amplitude, have been reported so far.
This has motivated us to continue intra-night optical monitoring of bona-fide
radio-quiet quasars (RQQs). Here we present the results for a sample of 11 RQQs
monitored by us on 19 nights. On 5 of these nights a given RQQ was monitored
simultaneously from two well separated observatories. In all, two clear cases
and two probable case of INOV were detected. From these data, we estimate an
INOV duty cycle of 8% for RQQs which would increase to 19% if the
`probable variable' cases are also included. Such comparatively small INOV duty
cycles for RQQs, together with the small INOV amplitudes (1%), are in
accord with the previously deduced characteristics of this phenomenon.Comment: 15 Pages, 4 Tables, 24 Figures; Accepted in BAS
A Late-Time Flattening of Afterglow Light Curves
We present a sample of radio afterglow light curves with measured decay
slopes which show evidence for a flattening at late times compared to optical
and X-ray decay indices. The simplest origin for this behavior is that the
change in slope is due to a jet-like outflow making a transition to
sub-relativistic expansion. This can explain the late-time radio light curves
for many but not all of the bursts in the sample. We investigate several
possible modifications to the standard fireball model which can flatten
late-time light curves. Changes to the shock microphysics which govern particle
acceleration, or energy injection to the shock (either radially or azimuthally)
can reproduce the observed behavior. Distinguishing between these different
possibilities will require simultaneous optical/radio monitoring of afterglows
at late times.Comment: ApJ, submitte
A Raman study of the Charge-Density-Wave State in AMoO (A = K,Rb)
We report a comparative Raman spectroscopic study of the
quasi-one-dimensional charge-density-wave systems \ab (A = K, Rb). The
temperature and polarization dependent experiments reveal charge-coupled
vibrational Raman features. The strongly temperature-dependent collective
amplitudon mode in both materials differ by about 3 cm, thus revealing the role
of alkali atom. We discus the observed vibrational features in terms of
charge-density-wave ground state accompanied by change in the crystal symmetry.
A frequency-kink in some modes seen in \bb between T = 80 K and 100 K supports
the first-order lock-in transition, unlike \rb. The unusually sharp Raman
lines(limited by the instrumental response) at very low temperatures and their
temperature evolution suggests that the decay of the low energy phonons is
strongly influenced by the presence of the temperature dependent charge density
wave gap.Comment: 13 pages, 7 figure
Effect of shape anisotropy on transport in a 2-dimensional computational model: Numerical simulations showing experimental features observed in biomembranes
We propose a 2-d computational model-system comprising a mixture of spheres
and the objects of some other shapes, interacting via the Lennard-Jones
potential. We propose a reliable and efficient numerical algorithm to obtain
void statistics. The void distribution, in turn, determines the selective
permeability across the system and bears a remarkable similarity with features
reported in certain biological experiments.Comment: 1 tex file, 2 sty files and 5 figures. To appear in Proc. of StatPhys
conference held in Calcutta, Physica A 199
GRB Energetics and the GRB Hubble Diagram: Promises and Limitations
We present a complete sample of 29 GRBs for which it has been possible to
determine temporal breaks (or limits) from their afterglow light curves. We
interpret these breaks within the framework of the uniform conical jet model,
incorporating realistic estimates of the ambient density and propagating error
estimates on the measured quantities. In agreement with our previous analysis
of a smaller sample, the derived jet opening angles of those 16 bursts with
redshifts result in a narrow clustering of geometrically-corrected gamma-ray
energies about E_gamma = 1.33e51 erg; the burst-to-burst variance about this
value is a factor of 2.2. Despite this rather small scatter, we demonstrate in
a series of GRB Hubble diagrams, that the current sample cannot place
meaningful constraints upon the fundamental parameters of the Universe. Indeed
for GRBs to ever be useful in cosmographic measurements we argue the necessity
of two directions. First, GRB Hubble diagrams should be based upon fundamental
physical quantities such as energy, rather than empirically-derived and
physically ill-understood distance indicators. Second, a more homogeneous set
should be constructed by culling sub-classes from the larger sample. These
sub-classes, though now first recognizable by deviant energies, ultimately must
be identifiable by properties other than those directly related to energy. We
identify a new sub-class of GRBs (``f-GRBs'') which appear both underluminous
by factors of at least 10 and exhibit a rapid fading at early times. About
10-20% of observed long-duration bursts appear to be f-GRBs.Comment: Accepted to the Astrophysical Journal (20 May 2003). 19 pages, 3
Postscript figure
Draft Genome Sequence for Desulfovibrio africanus Strain PCS.
Desulfovibrio africanus strain PCS is an anaerobic sulfate-reducing bacterium (SRB) isolated from sediment from Paleta Creek, San Diego, CA. Strain PCS is capable of reducing metals such as Fe(III) and Cr(VI), has a cell cycle, and is predicted to produce methylmercury. We present the D. africanus PCS genome sequence
- …
