445 research outputs found
Nuclear spin state narrowing via gate--controlled Rabi oscillations in a double quantum dot
We study spin dynamics for two electrons confined to a double quantum dot
under the influence of an oscillating exchange interaction. This leads to
driven Rabi oscillations between the --state and the
--state of the two--electron system. The width of the
Rabi resonance is proportional to the amplitude of the oscillating exchange. A
measurement of the Rabi resonance allows one to narrow the distribution of
nuclear spin states and thereby to prolong the spin decoherence time. Further,
we study decoherence of the two-electron states due to the hyperfine
interaction and give requirements on the parameters of the system in order to
initialize in the --state and to perform a
operation with unit fidelity.Comment: v1:9 pages, 1 figure; v2: 13 pages, 2 figures, added section on
measurement, to appear in Phys. Rev.
Spin-Orbit Coupling and Time-Reversal Symmetry in Quantum Gates
We study the effect of spin-orbit coupling on quantum gates produced by
pulsing the exchange interaction between two single electron quantum dots.
Spin-orbit coupling enters as a small spin precession when electrons tunnel
between dots. For adiabatic pulses the resulting gate is described by a unitary
operator acting on the four-dimensional Hilbert space of two qubits. If the
precession axis is fixed, time-symmetric pulsing constrains the set of possible
gates to those which, when combined with single qubit rotations, can be used in
a simple CNOT construction. Deviations from time-symmetric pulsing spoil this
construction. The effect of time asymmetry is studied by numerically
integrating the Schr\"odinger equation using parameters appropriate for GaAs
quantum dots. Deviations of the implemented gate from the desired form are
shown to be proportional to dimensionless measures of both spin-orbit coupling
and time asymmetry of the pulse.Comment: 10 pages, 3 figure
Spin decay and quantum parallelism
We study the time evolution of a single spin coupled inhomogeneously to a
spin environment. Such a system is realized by a single electron spin bound in
a semiconductor nanostructure and interacting with surrounding nuclear spins.
We find striking dependencies on the type of the initial state of the nuclear
spin system. Simple product states show a profoundly different behavior than
randomly correlated states whose time evolution provides an illustrative
example of quantum parallelism and entanglement in a decoherence phenomenon.Comment: 6 pages, 4 figures included, version to appear in Phys. Rev.
Dissipation effects in spin-Hall transport of electrons and holes
We investigate the spin-Hall effect of both electrons and holes in
semiconductors using the Kubo formula in the correct zero-frequency limit
taking into account the finite momentum relaxation time of carriers in real
semiconductors. This approach allows to analyze the range of validity of recent
theoretical findings. In particular, the spin-Hall conductivity vanishes for
vanishing spin-orbit coupling if the correct zero-frequency limit is performed.Comment: 5 pages, no figures, version to appear in Phys. Rev.
Binary trees, coproducts, and integrable systems
We provide a unified framework for the treatment of special integrable
systems which we propose to call "generalized mean field systems". Thereby
previous results on integrable classical and quantum systems are generalized.
Following Ballesteros and Ragnisco, the framework consists of a unital algebra
with brackets, a Casimir element, and a coproduct which can be lifted to higher
tensor products. The coupling scheme of the iterated tensor product is encoded
in a binary tree. The theory is exemplified by the case of a spin octahedron.Comment: 15 pages, 6 figures, v2: minor correction in theorem 1, two new
appendices adde
Influence of disorder on the ferromagnetism in diluted magnetic semiconductors
Influence of disorder on the ferromagnetic phase transition in diluted
(III,Mn)V semiconductors is investigated analytically. The regime of small
disorder is addressed, and the enhancement of the critical temperature by
disorder is found both in the mean field approximation and from the analysis of
the zero temperature spin stiffness. Due to disorder, the spin wave
fluctuations around the ferromagnetically ordered state acquire a finite mass.
At large charge carrier band width, the spin wave mass squared becomes
negative, signaling the breakdown of the ferromagnetic ground state and the
onset of a noncollinear magnetic order.Comment: Replaced with revised version. 10 pages, 3 figure
Double-Occupancy Errors, Adiabaticity, and Entanglement of Spin-Qubits in Quantum Dots
Quantum gates that temporarily increase singlet-triplet splitting in order to
swap electronic spins in coupled quantum dots, lead inevitably to a finite
double-occupancy probability for both dots. By solving the time-dependent
Schr\"odinger equation for a coupled dot model, we demonstrate that this does
not necessarily lead to quantum computation errors. Instead, the coupled dot
ground state evolves quasi-adiabatically for typical system parameters so that
the double-occupancy probability at the completion of swapping is negligibly
small. We introduce a measure of entanglement which explicitly takes into
account the possibilty of double occupancies and provides a necessary and
sufficient criterion for entangled states.Comment: 9 pages, 4 figures include
Fermionic Linear Optics Revisited
We provide an alternative view of the efficient classical simulatibility of
fermionic linear optics in terms of Slater determinants. We investigate the
generic effects of two-mode measurements on the Slater number of fermionic
states. We argue that most such measurements are not capable (in conjunction
with fermion linear optics) of an efficient exact implementation of universal
quantum computation. Our arguments do not apply to the two-mode parity
measurement, for which exact quantum computation becomes possible, see
quant-ph/0401066.Comment: 16 pages, submitted to the special issue of Foundation of Physics in
honor of Asher Peres' 70th birthda
Quantum-Hall Quantum-Bits
Bilayer quantum Hall systems can form collective states in which electrons
exhibit spontaneous interlayer phase coherence. We discuss the possibility of
using bilayer quantum dot many-electron states with this property to create
two-level systems that have potential advantages as quantum bits.Comment: 4 pages, 4 figures included, version to appear in Phys. Rev. B (Rapid
Communications
Quantum Entanglement in Fermionic Lattices
The Fock space of a system of indistinguishable particles is isomorphic (in a
non-unique way) to the state-space of a composite i.e., many-modes, quantum
system. One can then discuss quantum entanglement for fermionic as well as
bosonic systems. We exemplify the use of this notion -central in quantum
information - by studying some e.g., Hubbard,lattice fermionic models relevant
to condensed matter physics.Comment: 4 Pages LaTeX, 1 TeX Figure. Presentation improved, title changed. To
appear in PR
- …
