84,042 research outputs found

    Multitransient electromagnetic demonstration survey in France

    Get PDF
    We describe the acquisition, processing, and inversion of a multitransient electromagnetic (MTEM) single-line survey, conducted in December 2004 over an underground gas storage reservoir in southwestern France. The objective was to find a resistor corresponding to known gas about 500m below the survey line. In data acquisition, we deployed a 100-m inline bipole current source and twenty 100-m inline potential receivers in various configurations along the 5-km survey line; we measured the input current step and received voltages simultaneously. Then we deconvolved the received voltages for the measured input current to determine the earth impulse responses. We show how both amplitude and traveltime information contained in the recovered earth impulse responses reveal the lateral location and approximate depth of the resistive reservoir. Integrating the impulse responses yields step responses, from which the asymptotic DC values were estimated and used in rapid 2D dipole-dipole DC resistivity inversion to find the top of the reservoir. A series of collated 1D full-waveform inversions performed on individual common midpoint gathers of the step responses position the top and bottom of a resistor corresponding to known gas in the reservoir and also obtain the transverse resistance. The results imply that the MTEM method can be used as a tool for hydrocarbon exploration and production

    On the complexion of pseudoscalar mesons

    Full text link
    A strongly momentum-dependent dressed-quark mass function is basic to QCD. It is central to the appearance of a constituent-quark mass-scale and an existential prerequisite for Goldstone modes. Dyson-Schwinger equation (DSEs) studies have long emphasised this importance, and have proved that QCD's Goldstone modes are the only pseudoscalar mesons to possess a nonzero leptonic decay constant in the chiral limit when chiral symmetry is dynamically broken, while the decay constants of their radial excitations vanish. Such features are readily illustrated using a rainbow-ladder truncation of the DSEs. In this connection we find (in GeV): f_{eta_c(1S)}= 0.233, m_{eta_c(2S)}=3.42; and support for interpreting eta(1295), eta(1470) as the first radial excitations of eta(548), eta'(958), respectively, and K(1460) as the first radial excitation of the kaon. Moreover, such radial excitations have electromagnetic diameters greater than 2fm. This exceeds the spatial length of lattices used typically in contemporary lattice-QCD.Comment: 7 pages, 2 figures. Contribution to the proceedings of the "10th International Symposium on Meson-Nucleon Physics and the Structure of the Nucleon (MENU04)," IHEP, Beijing, China, 30/Aug.-4/Sept./0

    Bedrock geology of the northern Columbia Plateau and adjacent areas

    Get PDF
    The Columbia Plateau is surrounded by a complex assemblage of highly deformed Precambrian to lower Tertiary continental and oceanic rocks that reflects numerous episodes of continental accretion. The plateau itself is comprised of the Columbia River basalt group formed between about 16.5 x 1 million years B.P. and 6 x 1 million years B.P. Eruptions were infrequent between about 14 and 6 x 1 million years B.P., allowing time for erosion and deformation between successive outpourings. The present-day courses of much of the Snake River, and parts of the Columbia River, across the plateau date from this time. Basalt produced during this waning activity is more heterogeneous chemically and isotopically than older flows, reflecting its prolonged period of volcanism

    Coulomb Distortion Effects for Electron or Positron Induced (e,e)(e,e') Reactions in the Quasielastic Region

    Get PDF
    In response to recent experimental studies we investigate Coulomb distortion effects on (e,e)(e,e') reactions from medium and heavy nuclei for the case of electrons and positrons. We extend our previously reported full DWBA treatment of Coulomb distortions to the case of positrons for the 208Pb(e,e)^{208}Pb(e,e') reaction in the quasielastic region for a particular nuclear model. In addition, we use previously reported successful approaches to treating Coulomb corrections in an approximate way to calculate the Coulomb distortion effects for (e,e)(e,e') reactions for both electrons and positrons for the case of a simple nuclear model for quasielastic knock-out of nucleons. With these results in hand we develop a simple {\em ad-hoc} approximation for use in analyzing experiments, and discuss methods of extracting the ``longitudinal structure function" which enters into evaluation of the Coulomb sum rule. These techniques are generally valid for lepton induced reactions on nuclei with momentum transfers greater than approximately 300 MeV/cMeV/c.Comment: 18 pages, 6 figure

    Transverse, Propagating Velocity Perturbations in Solar Coronal Loops

    Full text link
    This short review paper gives an overview of recently observed transverse, propagating velocity perturbations in coronal loops. These ubiquitous perturbations are observed to undergo strong damping as they propagate. Using 3D numerical simulations of footpoint-driven transverse waves propagating in a coronal plasma with a cylindrical density structure, in combination with analytical modelling, it is demonstrated that the observed velocity perturbations can be understood in terms of coupling of different wave modes in the inhomogeneous boundaries of the loops. Mode coupling in the inhomogeneous boundary layers of the loops leads to the coupling of the transversal (kink) mode to the azimuthal (Alfven) mode, observed as the decay of the transverse kink oscillations. Both the numerical and analytical results show the spatial profile of the damped wave has a Gaussian shape to begin with, before switching to exponential decay at large heights. In addition, recent analysis of CoMP (Coronal Multi-channel Polarimeter) Doppler shift observations of large, off- limb, trans-equatorial loops shows that Fourier power at the apex appears to be higher in the high-frequency part of the spectrum than expected from theoretical models. This excess high-frequency FFT power could be tentative evidence for the onset of a cascade of the low-to-mid frequency waves into (Alfvenic) turbulence

    A model for the interaction of high-energy particles in straight and bent crystals implemented in Geant4

    Get PDF
    A model for the simulation of orientational effects in straight and bent periodic atomic structures is presented. The continuum potential approximation has been adopted.The model allows the manipulation of particle trajectories by means of straight and bent crystals and the scaling of the cross sections of hadronic and electromagnetic processes for channeled particles. Based on such a model, an extension of the Geant4 toolkit has been developed. The code has been validated against data from channeling experiments carried out at CERN

    Penetrating radiation system for detecting the amount of liquid in a tank Patent

    Get PDF
    Radiation source and detection system for measuring amount of liquid inside tanks independently of liquid configuratio
    corecore