1,577 research outputs found

    Module identification in bipartite and directed networks

    Full text link
    Modularity is one of the most prominent properties of real-world complex networks. Here, we address the issue of module identification in two important classes of networks: bipartite networks and directed unipartite networks. Nodes in bipartite networks are divided into two non-overlapping sets, and the links must have one end node from each set. Directed unipartite networks only have one type of nodes, but links have an origin and an end. We show that directed unipartite networks can be conviniently represented as bipartite networks for module identification purposes. We report a novel approach especially suited for module detection in bipartite networks, and define a set of random networks that enable us to validate the new approach

    Social encounter networks : collective properties and disease transmission

    Get PDF
    A fundamental challenge of modern infectious disease epidemiology is to quantify the networks of social and physical contacts through which transmission can occur. Understanding the collective properties of these interactions is critical for both accurate prediction of the spread of infection and determining optimal control measures. However, even the basic properties of such networks are poorly quantified, forcing predictions to be made based on strong assumptions concerning network structure. Here, we report on the results of a large-scale survey of social encounters mainly conducted in Great Britain. First, we characterize the distribution of contacts, which possesses a lognormal body and a power-law tail with an exponent of −2.45; we provide a plausible mechanistic model that captures this form. Analysis of the high level of local clustering of contacts reveals additional structure within the network, implying that social contacts are degree assortative. Finally, we describe the epidemiological implications of this local network structure: these contradict the usual predictions from networks with heavy-tailed degree distributions and contain public-health messages about control. Our findings help us to determine the types of realistic network structure that should be assumed in future population level studies of infection transmission, leading to better interpretations of epidemiological data and more appropriate policy decisions

    Identifying network communities with a high resolution

    Full text link
    Community structure is an important property of complex networks. An automatic discovery of such structure is a fundamental task in many disciplines, including sociology, biology, engineering, and computer science. Recently, several community discovery algorithms have been proposed based on the optimization of a quantity called modularity (Q). However, the problem of modularity optimization is NP-hard, and the existing approaches often suffer from prohibitively long running time or poor quality. Furthermore, it has been recently pointed out that algorithms based on optimizing Q will have a resolution limit, i.e., communities below a certain scale may not be detected. In this research, we first propose an efficient heuristic algorithm, Qcut, which combines spectral graph partitioning and local search to optimize Q. Using both synthetic and real networks, we show that Qcut can find higher modularities and is more scalable than the existing algorithms. Furthermore, using Qcut as an essential component, we propose a recursive algorithm, HQcut, to solve the resolution limit problem. We show that HQcut can successfully detect communities at a much finer scale and with a higher accuracy than the existing algorithms. Finally, we apply Qcut and HQcut to study a protein-protein interaction network, and show that the combination of the two algorithms can reveal interesting biological results that may be otherwise undetectable.Comment: 14 pages, 5 figures. 1 supplemental file at http://cic.cs.wustl.edu/qcut/supplemental.pd

    Optimal map of the modular structure of complex networks

    Full text link
    Modular structure is pervasive in many complex networks of interactions observed in natural, social and technological sciences. Its study sheds light on the relation between the structure and function of complex systems. Generally speaking, modules are islands of highly connected nodes separated by a relatively small number of links. Every module can have contributions of links from any node in the network. The challenge is to disentangle these contributions to understand how the modular structure is built. The main problem is that the analysis of a certain partition into modules involves, in principle, as many data as number of modules times number of nodes. To confront this challenge, here we first define the contribution matrix, the mathematical object containing all the information about the partition of interest, and after, we use a Truncated Singular Value Decomposition to extract the best representation of this matrix in a plane. The analysis of this projection allow us to scrutinize the skeleton of the modular structure, revealing the structure of individual modules and their interrelations.Comment: 21 pages, 10 figure

    Detection of Complex Networks Modularity by Dynamical Clustering

    Full text link
    Based on cluster de-synchronization properties of phase oscillators, we introduce an efficient method for the detection and identification of modules in complex networks. The performance of the algorithm is tested on computer generated and real-world networks whose modular structure is already known or has been studied by means of other methods. The algorithm attains a high level of precision, especially when the modular units are very mixed and hardly detectable by the other methods, with a computational effort O(KN){\cal O}(KN) on a generic graph with NN nodes and KK links.Comment: 5 pages, 2 figures. Version accepted for publication on PRE Rapid Communications: figures changed and text adde

    Social encounter networks : characterizing Great Britain

    Get PDF
    A major goal of infectious disease epidemiology is to understand and predict the spread of infections within human populations, with the intention of better informing decisions regarding control and intervention. However, the development of fully mechanistic models of transmission requires a quantitative understanding of social interactions and collective properties of social networks. We performed a cross-sectional study of the social contacts on given days for more than 5000 respondents in England, Scotland and Wales, through postal and online survey methods. The survey was designed to elicit detailed and previously unreported measures of the immediate social network of participants relevant to infection spread. Here, we describe individual-level contact patterns, focusing on the range of heterogeneity observed and discuss the correlations between contact patterns and other socio-demographic factors. We find that the distribution of the number of contacts approximates a power-law distribution, but postulate that total contact time (which has a shorter-tailed distribution) is more epidemiologically relevant. We observe that children, public-sector and healthcare workers have the highest number of total contact hours and are therefore most likely to catch and transmit infectious disease. Our study also quantifies the transitive connections made between an individual's contacts (or clustering); this is a key structural characteristic of social networks with important implications for disease transmission and control efficacy. Respondents' networks exhibit high levels of clustering, which varies across social settings and increases with duration, frequency of contact and distance from home. Finally, we discuss the implications of these findings for the transmission and control of pathogens spread through close contact

    Fast Community Identification by Hierarchical Growth

    Full text link
    A new method for community identification is proposed which is founded on the analysis of successive neighborhoods, reached through hierarchical growth from a starting vertex, and on the definition of communities as a subgraph whose number of inner connections is larger than outer connections. In order to determine the precision and speed of the method, it is compared with one of the most popular community identification approaches, namely Girvan and Newman's algorithm. Although the hierarchical growth method is not as precise as Girvan and Newman's method, it is potentially faster than most community finding algorithms.Comment: 6 pages, 5 figure

    Local multiresolution order in community detection

    Full text link
    Community detection algorithms attempt to find the best clusters of nodes in an arbitrary complex network. Multi-scale ("multiresolution") community detection extends the problem to identify the best network scale(s) for these clusters. The latter task is generally accomplished by analyzing community stability simultaneously for all clusters in the network. In the current work, we extend this general approach to define local multiresolution methods, which enable the extraction of well-defined local communities even if the global community structure is vaguely defined in an average sense. Toward this end, we propose measures analogous to variation of information and normalized mutual information that are used to quantitatively identify the best resolution(s) at the community level based on correlations between clusters in independently-solved systems. We demonstrate our method on two constructed networks as well as a real network and draw inferences about local community strength. Our approach is independent of the applied community detection algorithm save for the inherent requirement that the method be able to identify communities across different network scales, with appropriate changes to account for how different resolutions are evaluated or defined in a particular community detection method. It should, in principle, easily adapt to alternative community comparison measures.Comment: 19 pages, 11 figure
    corecore