277 research outputs found
Biomonitoring of intermittent rivers and ephemeral streams in Europe: current practice and priorities to enhance ecological status assessments
Intermittent rivers and ephemeral streams (IRES) are common across Europe and dominate some Mediterranean river networks. In all climate zones, IRES support high biodiversity and provide ecosystem services. As dynamic ecosystems that transition between flowing, pool, and dry states, IRES are typically poorly represented in biomonitoring programmes implemented to characterize EU Water Framework Directive ecological status. We report the results of a survey completed by representatives from 20 European countries to identify current challenges to IRES status assessment, examples of best practice, and priorities for future research. We identify five major barriers to effective ecological status classification in IRES: 1. the exclusion of IRES from Water Framework Directive biomonitoring based on their small catchment size; 2. the lack of river typologies that distinguish between contrasting IRES; 3. difficulties in defining the ‘reference conditions’ that represent unimpacted dynamic ecosystems; 4. classification of IRES ecological status based on lotic communities sampled using methods developed for perennial rivers; and 5. a reliance on taxonomic characterization of local communities. Despite these challenges, we recognize examples of innovative practice that can inform modification of current biomonitoring activity to promote effective IRES status classification. Priorities for future research include reconceptualization of the reference condition approach to accommodate spatiotemporal fluctuations in community composition, and modification of indices of ecosystem health to recognize both taxon-specific sensitivities to intermittence and dispersal abilities, within a landscape context
Le partage de la ressource en eau sur la Durance en 2050 : vers une évolution du mode de gestion des grands ouvrages duranciens ?
Congrès SHF: Water Tensions in Europe and in the Mediterranean: water crisis by 2050?, Paris, FRA, 08-/10/2015 - 09/10/2015International audienceUne vision prospective de la gestion de l'eau du bassin de la Durance et des territoires alimentés par ses eaux à l'horizon 2050 a été élaborée, appuyée par une chaine de modèles incluant des représentations du climat, de la ressource naturelle, des demandes en eau et du fonctionnement des grands ouvrages hydrauliques (Serre-Ponçon, Castillon et Sainte-Croix), sous contraintes de respect des débits réservés, de cotes touristiques dans les retenues et de restitution d'eau stockée pour des usages en aval. Cet ensemble, validé en temps présent, a été alimenté par des projections climatiques et paramétré pour intégrer les évolutions du territoire décrites par des scénarios de développement socio-économique avec une hypothèse de conservation des règles de gestion actuelles. Les résultats suggèrent à l'horizon 2050 : une hausse de la température moyenne de l'air impactant l'hydrologie de montagne ; une évolution incertaine des précipitations ; une réduction des stocks de neige et une fonte avancée dans l'année qui induisent une réduction des débits au printemps ; une diminution de la ressource en eau en période estivale ; une diminution de la demande globale en eau à l'échelle du territoire, cette demande étant fortement conditionnée par les scénarios territoriaux élaborés ici ; la satisfaction des demandes en eau en aval des ouvrages considérées comme prioritaires, au détriment de la production d'énergie en hiver (flexibilité moindre en période de pointe) et du maintien de cotes touristiques en été ;une diminution de la production d'énergie due notamment à la réduction des apports en amont des ouvrages hydroélectriques
The response of perennial and temporary headwater stream invertebrate communities to hydrological extremes
The headwaters of karst rivers experience considerable hydrological variability, including spates and streambed drying. Extreme summer flooding on the River Lathkill (Derbyshire, UK) provided the opportunity to examine the invertebrate community response to unseasonal spate flows, flow recession and, at temporary sites, streambed drying. Invertebrates were sampled at sites with differing flow permanence regimes during and after the spates. Following streambed drying at temporary sites, dewatered surface sediments were investigated as a refugium for aquatic invertebrates. Experimental rehydration of these dewatered sediments was conducted to promote development of desiccation-tolerant life stages. At perennial sites, spate flows reduced invertebrate abundance and diversity, whilst at temporary sites, flow reactivation facilitated rapid colonisation of the surface channel by a limited number of invertebrate taxa. Following streambed drying, 38 taxa were recorded from the dewatered and rehydrated sediments, with Oligochaeta being the most abundant taxon and Chironomidae (Diptera) the most diverse. Experimental rehydration of dewatered sediments revealed the presence of additional taxa, including Stenophylax sp. (Trichoptera: Limnephilidae) and Nemoura sp. (Plecoptera: Nemouridae). The influence of flow permanence on invertebrate community composition was apparent despite the aseasonal high-magnitude flood events
The role of organisms in hyporheic processes : gaps in current knowledge, needs for future research and applications
Fifty years after the hyporheic zone was first defined (Orghidan, 1959), there are still gaps in the knowledge regarding the role of biodiversity in hyporheic processes. First, some methodological questions remained unanswered regarding the interactions between biodiversity and physical processes, both for the study of habitat characteristics and interactions at different scales. Furthermore, many questions remain to be addressed to help inform our understanding of invertebrate community dynamics, especially regarding the trophic niches of organisms, the functional groups present within sediment, and their temporal changes. Understanding microbial community dynamics would require investigations about their relationship with the physical characteristics of the sediment, their diversity, their relationship with metabolic pathways, their inter- actions with invertebrates, and their response to environmental stress. Another fundamental research question is that of the importance of the hyporheic zone in the global metabolism of the river, which must be explored in relation to organic matter recycling, the effects of disturbances, and the degradation of contaminants. Finally, the application of this knowledge requires the development of methods for the estimation of hydro- logical exchanges, especially for the management of sediment clogging, the optimization of self-purification, and the integration of climate change in environmental policies. The development of descriptors of hyporheic zone health and of new metrology is also crucial to include specific targets in water policies for the long-term management of the system and a clear evaluation of restoration strategies
Science and Management of Intermittent Rivers and Ephemeral Streams (SMIRES)
More than half of the global river network is composed of intermittent rivers and ephemeral streams (IRES), which are expanding in response to climate change and increasing water demands. After years of obscurity, the science of IRES has bloomed recently and it is being recognised that IRES support a unique and high biodiversity, provide essential ecosystem services and are functionally part of river networks and groundwater systems. However, they still lack protective and adequate management, thereby jeopardizing water resources at the global scale. This Action brings together hydrologists, biogeochemists, ecologists, modellers, environmental economists, social researchers and stakeholders from 14 different countries to develop a research network for synthesising the fragmented, recent knowledge on IRES, improving our understanding of IRES and translating this into a science-based, sustainable management of river networks. Deliverables will be provided through i) research workshops synthesising and addressing key challenges in IRES science, supporting research exchange and educating young researchers, and ii) researcher-stakeholder workshops translating improved knowledge into tangible tools and guidelines for protecting IRES and raising awareness of their importance and value in societal and decision-maker spheres. This Action is organized within six Working Groups to address: (i) the occurrence, distribution and hydrological trends of IRES; (ii) the effects of flow alterations on IRES functions and services; (iii) the interaction of aquatic and terrestrial biogeochemical processes at catchment scale; (iv) the biomonitoring of the ecological status of IRES; (v) synergies in IRES research at the European scale, data assemblage and sharing; (vi) IRES management and advocacy training
Travelers With Cutaneous Leishmaniasis Cured Without Systemic Therapy
Guidelines recommend wound care and/or local therapy as first-line treatment for cutaneous leishmaniasis. An analysis of a referral treatment program in 135 travelers showed that this approach was feasible in 62% of patients, with positive outcome in 83% of evaluable patient
Specific PCR assay for direct detection of intestinal microsporidia Entyrocytozoon bieneusi and Encephalitozoon intestinalis in fecal specimens from human immunodeficiency virus-infected patients
Mapping the temporary and perennial character of whole river networks
Knowledge of the spatial distribution of temporary and perennial river channels in a whole catchment is important for effective integrated basin management and river biodiversity conservation. However, this information is usually not available or is incomplete. In this study, we present a statistically based methodology to classify river segments from a whole river network (Deva-Cares catchment, Northern Spain) as temporary or perennial. This method is based on an a priori classification of a subset of river segments as temporary or perennial, using field surveys and aerial images, and then running Random Forest models to predict classification membership for the rest of the river network. The independent variables and the river network were derived following a computer-based geospatial simulation of riverine landscapes. The model results show high values of overall accuracy, sensitivity, and specificity for the evaluation of the fitted model to the training and testing data set (?0.9). The most important independent variables were catchment area, area occupied by broadleaf forest, minimum monthly precipitation in August, and average catchment elevation. The final map shows 7525 temporary river segments (1012.5 km) and 3731 perennial river segments (662.5 km). A subsequent validation of the mapping results using River Habitat Survey data and expert knowledge supported the validity of the proposed maps. We conclude that the proposed methodology is a valid method for mapping the limits of flow permanence that could substantially increase our understanding of the spatial links between terrestrial and aquatic interfaces, improving the research, management, and conservation of river biodiversity and functioning.We would like to thank the Journal Editor and the three referees for their comments and suggestions, which
have greatly improved the manuscript. This study was partly funded by the Spanish Ministry of Economy and
Competitiveness as part of the RIVERLANDS (Ref: BIA-2012–33572) and HYDRA (Ref: BIA-2015–71197)
projects. Alexia María González-Ferreras is supported by a predoctoral research grant (Ref: BES-2013–065770) from the Spanish Ministry of Economy and Competitiveness, and José Barquín was supported by a Ramon y Cajal grant (Ref: RYC-2011–08313) from the Spanish Ministry of Economy and Competitiveness. We would like to thank the Government of Cantabria, the Principado de Asturias and the forest guards of the study areas for providing useful information. We would also like to acknowledge the Interautonomic
Consortium of the Picos de Europa National Park and the Biodiversity Foundation from the Ministry of Agriculture, Food and Environment, for their advice and project support. Finally, we would also like to thank all the people involved in the field data collection, and those who read an early draft of the manuscript and suggested several improvements. The data and the data sources used in this study are cited and explained in the text. Readers can obtain further information about the data supporting the analysis and conclusions by contacting the corresponding author
An unusual cause of alveolar hemorrhage post hematopoietic stem cell transplantation: A case report
BACKGROUND: Hematopoietic stem cell transplantation is being increasingly used in cancer therapy. Diffuse alveolar hemorrhage, an early complication of stem cell transplant, results from bacterial, viral and fungal infections, coagulopathy, and engraftment syndrome, or can be idiopathic. Diffuse alveolar hemorrhage associated with Strongyloides stercoralis hyperinfection in stem cell transplant patients has been rarely reported. CASE PRESENTATION: We describe an unusual cause of alveolar hemorrhage post hematopoietic stem cell transplant due to Strongyloides hyperinfection. Therapy with parenteral ivermectin and thiabendazole was initiated but the patient deteriorated and died of respiratory failure and septic shock. CONCLUSION: Strongyloides stercoralis hyperinfection is an unusual cause of alveolar hemorrhage early after hematopoietic stem cell transplant with very high mortality
A comparison of biotic groups as dry-phase indicators of ecological quality in intermittent rivers and ephemeral streams
Intermittent rivers and ephemeral streams (IRES) are dynamic ecosystems that shift between aquatic and terrestrial states. IRES are widespread, abundant and increasing in extent, but developing biomonitoring programmes to determine their ecological quality is challenging. To date, quality assessments have focused on the aquatic organisms present during wet phases, whereas dry-phase communities remain poorly characterized. We examined multiple biotic groups present in dry IRES channels, to compare assemblages at sites impacted and unimpacted by human activity and to evaluate the potential of each group as an ecological quality indicator. We explored existing, unpublished data for three biotic groups: an aquatic microflora (diatoms), an aquatic fauna (the invertebrate ‘seedbank’), and a mixed flora (aquatic and terrestrial plants); notably, we did not source data for terrestrial assemblages with high potential to act as indicators. Diatom and plant assemblage composition differed between impacted and unimpacted sites, and the latter assemblages were more diverse and included more indicator taxa. Invertebrate seedbank taxa richness was higher at unimpacted sites but compositional differences were not detected, probably due to the coarse taxonomic resolution to which abundant taxa were identified. Performance of standard indices of ecological quality was variable, but differences were identified between impacted and unimpacted conditions for all biotic groups. Our results can inform the enhancement of biomonitoring programmes designed to characterize IRES ecological quality in relation to legislative targets. We highlight the need to integrate wet- and dry-phase survey data in holistic quality assessments. Although we suggest diatoms, aquatic plants and the aquatic invertebrate seedbank as having the potential to inform assessment of dry-phase ecological quality, we highlight the need for research to further characterize these aquatic groups and, crucially, to explore terrestrial assemblages with high potential to act as dry-phase quality indicators
- …
