738 research outputs found
Analysis, testing, and evaluation of faulted and unfaulted Wye, Delta, and open Delta connected electromechanical actuators
Mathematical models capable of simulating the transient, steady state, and faulted performance characteristics of various brushless dc machine-PSA (power switching assembly) configurations were developed. These systems are intended for possible future use as primemovers in EMAs (electromechanical actuators) for flight control applications. These machine-PSA configurations include wye, delta, and open-delta connected systems. The research performed under this contract was initially broken down into the following six tasks: development of mathematical models for various machine-PSA configurations; experimental validation of the model for failure modes; experimental validation of the mathematical model for shorted turn-failure modes; tradeoff study; and documentation of results and methodology
Numerical simulation of dynamics of brushless dc motors for aerospace and other applications. Volume 2: User's guide to computer EMA model
A description and user's guide of the computer program developed to simulate the dynamics of an electromechanical actuator for aerospace applications are presented. The effects of the stator phase currents on the permanent magnets of the rotor are examined. The voltage and current waveforms present in the power conditioner network during the motoring, regenerative braking, and plugging modes of operation are presented and discussed
Improved transistor-controlled and commutated brushless DC motors for electric vehicle propulsion
The development, design, construction, and testing processes of two electronically (transistor) controlled and commutated permanent magnet brushless dc machine systems, for propulsion of electric vehicles are detailed. One machine system was designed and constructed using samarium cobalt for permanent magnets, which supply the rotor (field) excitation. Meanwhile, the other machine system was designed and constructed with strontium ferrite permanent magnets as the source of rotor (field) excitation. These machine systems were designed for continuous rated power output of 15 hp (11.2 kw), and a peak one minute rated power output of 35 hp (26.1 kw). Both power ratings are for a rated voltage of 115 volts dc, assuming a voltage drop in the source (battery) of about 5 volts. That is, an internal source voltage of 120 volts dc. Machine-power conditioner system computer-aided simulations were used extensively in the design process. These simulations relied heavily on the magnetic field analysis in these machines using the method of finite elements, as well as methods of modeling of the machine power conditioner system dynamic interaction. These simulation processes are detailed. Testing revealed that typical machine system efficiencies at 15 hp (11.2 kw) were about 88% and 84% for the samarium cobalt and strontium ferrite based machine systems, respectively. Both systems met the peak one minute rating of 35 hp
Computer-aided modeling and prediction of performance of the modified Lundell class of alternators in space station solar dynamic power systems
The main purpose of this project is the development of computer-aided models for purposes of studying the effects of various design changes on the parameters and performance characteristics of the modified Lundell class of alternators (MLA) as components of a solar dynamic power system supplying electric energy needs in the forthcoming space station. Key to this modeling effort is the computation of magnetic field distribution in MLAs. Since the nature of the magnetic field is three-dimensional, the first step in the investigation was to apply the finite element method to discretize volume, using the tetrahedron as the basic 3-D element. Details of the stator 3-D finite element grid are given. A preliminary look at the early stage of a 3-D rotor grid is presented
Computationally Efficient Strand Eddy Current Loss Calculation in Electric Machines
A fast finite element (FE) based method for the calculation of eddy current losses in the stator windings of randomly wound electric machines is presented in this paper. The method is particularly suitable for implementation in large-scale design optimization algorithms where a qualitative characterization of such losses at higher speeds is most beneficial for identification of the design solutions that exhibit the lowest overall losses including the ac losses in the stator windings. Unlike the common practice of assuming a constant slot fill factor s f for all the design variations, the maximum s f in the developed method is determined based on the individual slot structure/dimensions and strand wire specifications. Furthermore, in lieu of detailed modeling of the conductor strands in the initial FE model, which significantly adds to the complexity of the problem, an alternative rectangular coil modeling subject to a subsequent flux mapping technique for determination of the impinging flux on each individual strand is pursued. Rather than pursuing the precise estimation of ac conductor losses, the research focus of this paper is placed on the development of a computationally efficient technique for the derivation of strand eddy current losses applicable in design optimization, especially where both the electromagnetic and thermal machine behavior are accounted for. A fractional-slot concentrated winding permanent magnet synchronous machine is used for the purpose of this study due to the higher slot leakage flux and slot opening fringing flux of such machines, which are the major contributors to strand eddy current losses in the windings. The analysis is supplemented with an investigation on the influence of the electrical loading on ac winding loss effects for this machine design, a subject that has received less attention in the literature. Experimental ac loss measurements on a 12-slot 10-pole stator assembly will be discussed to verify the existing trends in the simulation result
On the Uniqueness of Solution of Magnetostatic Vector‐potential Problems by Three‐dimensional Finite‐element Methods
In this paper, particular attention is paid to the impact of finite‐element approximation on uniqueness and to approximations implicit in finite element formulations from the uniqueness requirements standpoint. It is also shown that the flux density is unique without qualifications. The theoretical and numerical uniqueness of the magnetic vector potential in three‐dimensional problems is also given. This analysis is restricted to linear, isotropic media with Dirichlet Boundary conditions. As an interesting consequence of this analysis it is shown that, under usual conditions adopted in obtaining three‐dimensional finite‐element solutions, it is not necessary to specify div Ā in order that Ā be uniquely defined
Analysis of electromagnetic interference from power system processing and transmission components for Space Station Freedom
The goal is to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom.The approach consists of four steps: (1) develop analytical tools (models and computer programs); (2) conduct parameterization studies; (3) predict the global space station EMI environment; and (4) provide a basis for modification of EMI standards
A Computationally Efficient Method for Calculation of Strand Eddy Current Losses in Electric Machines
In this paper, a fast finite element (FE)-based method for the calculation of eddy current losses in the stator windings of randomly wound electric machines with a focus on fractional slot concentrated winding (FSCW) permanent magnet (PM) machines will be presented. The method is particularly suitable for implementation in large-scale design optimization algorithms where a qualitative characterization of such losses at higher speeds is most beneficial for identification of the design solutions which exhibit the lowest overall losses including the ac losses in the stator windings. Unlike the common practice of assuming a constant slot fill factor, sf, for all the design variations, the maximum sf in the developed method is determined based on the individual slot structure/dimensions and strand wire specifications. Furthermore, in lieu of detailed modeling of the conductor strands in the initial FE model, which significantly adds to the complexity of the problem, an alternative rectangular coil modeling subject to a subsequent flux mapping technique for determination of the impinging flux on each individual strand is pursued. The research focus of the paper is placed on development of a computationally efficient technique for the ac winding loss derivation applicable in design-optimization, where both the electromagnetic and thermal machine behavior are accounted for. The analysis is supplemented with an investigation on the influence of the electrical loading on ac winging loss effects for a particular machine design, a subject which has received less attention in the literature. Experimental ac loss measurements on a 12-slot 10-pole stator assembly will be discussed to verify the existing trends in the simulation results
Analysis of electromagnetic interference from power system processing and transmission components for Space Station Freedom
The goal of this research project was to analyze the potential effects of electromagnetic interference (EMI) originating from power system processing and transmission components for Space Station Freedom. The approach consists of four steps: (1) developing analytical tools (models and computer programs); (2) conducting parameterization (what if?) studies; (3) predicting the global space station EMI environment; and (4) providing a basis for modification of EMI standards
High glucose up-regulates ENaC and SGK1 expression in HCD-cells
Background/Aim: Diabetic nephropathy is associated with progressive renal damage, leading to impaired function and end-stage renal failure. Secondary hypertension stems from a deranged ability of cells within the kidney to resolve and appropriately regulate sodium resorption in response to hyperglycaemia. However, the mechanisms by which glucose alters sodium re-uptake have not been fully characterised.
Methods: Here we present RT-PCR, western blot and immunocytochemistry data confirming mRNA and protein expression of the serum and glucocorticoid inducible kinase (SGK1) and the a conducting subunit of the epithelial sodium channel (ENaC) in a model in vitro system of the human cortical collecting duct (HCD). We examined changes in expression of these elements in response to glucose challenge, designed to mimic hyperglycaemia associated with type 2 diabetes mellitus. Changes in Na+ concentration were assessed using single-cell microfluorimetry.
Results: Incubation with glucose, the Ca2+-ionophore ionomycin and the cytokine TGF-beta 1 were all found to evoke significant and time-dependent increases in both SGK1 and alpha ENaC protein expression. These molecular changes were correlated to an increase in Na+-uptake at the single-cell level.
Conclusion: Together these data offer a potential explanation for glucose-evoked Na+-resorption and a potential contributory role of SGK1 and ENaCs in development of secondary hypertension, commonly linked to diabetic nephropathy
- …
