3,983 research outputs found

    Predictive context biases perceptual selection during binocular rivalry

    Get PDF
    Prediction may be a fundamental principle of sensory processing, such that the brain continuously generates predictions about forthcoming sensory information. However, little is known about how prediction contributes to the selection of a conscious percept from among competing alternatives. Here, we used binocular rivalry to investigate the effects of prediction on perceptual selection. In binocular rivalry, incompatible images presented to the two eyes result in a perceptual alternation between the images, even though the visual stimuli remain constant. If predictive signals influence the competition between neural representations of rivalrous images, this influence should generate a bias in perceptual selection that depends on predictive context. To manipulate predictive context, we developed a novel binocular rivalry paradigm in which orthogonal rivalrous test gratings were immediately preceded by rotating gratings presented identically to the two eyes. One of the rivalrous gratings had an orientation that was consistent with the preceding rotation direction (it was the expected next image in the series), and the other had an inconsistent orientation. We found that human observers were more likely to perceive the consistent grating, suggesting that predictive context biased selection in favor of the predicted percept. This prediction effect depended on only recent stimulus history, and it could be dissociated from another stimulus history effect related to orientation-specific adaptation. Since binocular rivalry between orthogonal gratings is thought to be resolved at an early stage of visual processing, these results suggest that predictive signals may exist at low levels of the visual processing hierarchy and that these signals can bias conscious perception. In the future, this paradigm could be used to test whether visual percepts are generated from the combination of prior information and incoming sensory information according to Bayesian principles

    Tablet computers in assessing performance in a high stakes exam : opinion matters

    Get PDF
    The authors would like to thank Dr Craig brown, University of Aberdeen for assistance with data analysis.Peer reviewedPublisher PD

    Chemicals having estrogenic activity can be released from some bisphenol a-free, hard and clear, thermoplastic resins

    Get PDF
    Background: Chemicals that have estrogenic activity (EA) can potentially cause adverse health effects in mammals including humans, sometimes at low doses in fetal through juvenile stages with effects detected in adults. Polycarbonate (PC) thermoplastic resins made from bisphenol A (BPA), a chemical that has EA, are now often avoided in products used by babies. Other BPA-free thermoplastic resins, some hypothesized or advertised to be EA-free, are replacing PC resins used to make reusable hard and clear thermoplastic products such as baby bottles. Methods: We used two very sensitive and accurate in vitro assays (MCF-7 and BG1Luc human cell lines) to quantify the EA of chemicals leached into ethanol or water/saline extracts of fourteen unstressed or stressed (autoclaving, microwaving, UV radiation) thermoplastic resins. Estrogen receptor (ER)-dependent agonist responses were confirmed by their inhibition with the ER antagonist ICI 182,780. Results: Our data showed that some (4/14) unstressed and stressed BPA-free thermoplastic resins leached chemicals having significant levels of EA, including one polystyrene (PS), and three Tritan™ resins, the latter reportedly EA-free. Exposure to UV radiation in natural sunlight resulted in an increased release of EA from Tritan™ resins. Triphenyl-phosphate (TPP), an additive used to manufacture some thermoplastic resins such as Tritan™, exhibited EA in both MCF-7 and BG1Luc assays. Ten unstressed or stressed glycol-modified polyethylene terephthalate (PETG), cyclic olefin polymer (COP) or copolymer (COC) thermoplastic resins did not release chemicals with detectable EA under any test condition. Conclusions: This hazard survey study assessed the release of chemicals exhibiting EA as detected by two sensitive, widely used and accepted, human cell line in vitro assays. Four PC replacement resins (Tritan™ and PS) released chemicals having EA. However, ten other PC-replacement resins did not leach chemicals having EA (EA-free-resins). These results indicate that PC-replacement plastic products could be made from EA-free resins (if appropriate EA-free additives are chosen) that maintain advantages of re-usable plastic items (price, weight, shatter resistance) without releasing chemicals having EA that potentially produce adverse health effects on current or future generations.This work was supported by the following NIH/NIEHS grants: R44 ES011469, 01–03 (CZY); 1R43/44 ES014806, 01–03 (CZY); subcontract (CZY, PI) on an NIH Grant 01–03 43/44ES018083-01. This work was also supported by NIH grants to MSD (P42 ES004699), and DJK and SIY (1R43ES018083-01-03, NIEHS 1R44ES019442-01-03 and NIEHS 2R44ES016964-01-03).Neuroscienc

    Early Neoproterozoic limestones from the Gwna Group, Anglesey

    Get PDF
    Limestone megaclasts up to hundreds of metres in size are present within the Gwna Group mélange, North Wales, UK. The mélange has been interpreted as part of a Peri-Gondwanan fore-arc accretionary complex although the age of deposition remains contentious, proposals ranging from Neoproterozoic to Early Ordovician. This paper uses strontium isotope chemostratigraphy to establish the age of the limestone blocks and thus provide a maximum age constraint on mélange formation. Results show that, although the carbonates are locally dolomitized, primary 87Sr/86Sr ratios can be identified and indicate deposition sometime between the late Tonian and earliest Cryogenian. This age is older than that suggested by stromatolites within the limestone and indicates that the limestone did not form as cap carbonate deposits

    Novel 2-amino-isoflavones exhibit aryl hydrocarbon receptor agonist or antagonist activity in a species/cell-specific context

    Get PDF
    The aryl hydrocarbon receptor (AhR) mediates the induction of a variety of xenobiotic metabolism genes. Activation of the AhR occurs through binding to a group of structurally diverse compounds, most notably dioxins, which are exogenous ligands. Isoflavones are part of a family which include some well characterised endogenous AhR ligands. This paper analysed a novel family of these compounds, based on the structure of 2-amino-isoflavone. Initially two luciferase-based cell models, mouse H1L6.1c2 and human HG2L6.1c3, were used to identify whether the compounds had AhR agonistic and/or antagonistic properties. This analysis showed that some of the compounds were weak agonists in mouse and antagonists in human. Further analysis of two of the compounds, Chr-13 and Chr-19, was conducted using quantitative real-time PCR in rat H4IIE and human MCF-7 cells. The results indicated that Chr-13 was an agonist in rat but an antagonist in human cells. Chr-19 was shown to be an agonist in rat but more interestingly, a partial agonist in human. Luciferase induction results not only revealed that subtle differences in the structure of the compound could produce species-specific differences in response but also dictated the ability of the compound to be an AhR agonist or antagonist. Substituted 2-amino-isoflavones represent a novel group of AhR ligands that must differentially interact with the AhR ligand binding domain to produce their species-specific agonist or antagonist activity and future ligand binding analysis and docking studies with these compounds may provide insights into the differential mechanisms of action of structurally similar compounds

    Electron correlations, spontaneous magnetization and momentum density in quantum dots

    Full text link
    The magnetization of quantum dots is discussed in terms of a relatively simple but exactly solvable model Hamiltonian. The model predicts oscillations in spin polarization as a function of dot radius for a fixed electron density. These oscillations in magnetization are shown to yield distinct signature in the momentum density of the electron gas, suggesting the usefulness of momentum resolved spectroscopies for investigating the magnetization of dot systems. We also present variational quantum Monte Carlo calculations on a square dot containing 12 electrons in order to gain insight into correlation effects on the interactions between like and unlike spins in a quantum dot.Comment: 6 pages, 4 figure

    Options for state chemicals policy reform:A resource guide

    Get PDF

    Spontaneous Magnetization and Electron Momentum Density in 3D Quantum Dots

    Full text link
    We discuss an exactly solvable model Hamiltonian for describing the interacting electron gas in a quantum dot. Results for a spherical square well confining potential are presented. The ground state is found to exhibit striking oscillations in spin polarization with dot radius at a fixed electron density. These oscillations are shown to induce characteristic signatures in the momentum density of the electron gas, providing a novel route for direct experimental observation of the dot magnetization via spectroscopies sensitive to the electron momentum density.Comment: 5 pages (Revtex4), 4 (eps) figure
    corecore