204 research outputs found

    Probing of local ferroelectricity in BiFeO3 thin films and (BiFeO3)m(SrTiO3)m superlattices

    Full text link
    Ferroelectric BiFeO3 thin films and artificial superlattices of (BiFeO3)m(SrTiO3)m (m~ 1 to 10 unit cells) were fabricated on (001)-oriented SrTiO3 substrates by pulsed laser ablation. The variation of leakage current and macroscopic polarization with periodicity was studied. Piezo force microscopy studies revealed the presence of large ferroelectric domains in the case of BiFeO3 thin films while a size reduction in ferroelectric domains was observed in the case of superlattice structures. The results show that the modification of ferroelectric domains through superlattice, could provide an additional control on engineering the domain wall mediated functional properties.Comment: 14 pages, To be published in J. Mag. Mag Mater. proceedings of EMRS 200

    Optical conductivity of CuO_2 infinite-layer films

    Full text link
    The infrared conductivity of CaCuO_2, SrCuO_{2-y}, and Sr_{0.85}Nd_{0.15}CuO_2 infinite-layer films is obtained from reflectivity measurements by taking into account the substrate contribution. SrCuO_{2-y} and Sr_{0.85}Nd_{0.15}CuO_2 exhibit extra-phonon modes and structured bands in the midinfrared, not found in stoichiometric CaCuO_2. These features mirror those observed in the perovskitic cuprates, thus showing that the polaronic properties of high-T_c superconductors are intrinsic to the CuO_2 planes.Comment: File latex, 5 p. incl. 4 fig. in epsf. Submitted to Solid State Com

    A revised generic classification of the tribe Sileneae (Caryophyllaceae)

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73198/1/j.1756-1051.2000.tb00760.x.pd

    Remobilization of leaf S compounds and senescence in response to restricted sulphate supply during the vegetative stage of oilseed rape are affected by mineral N availability

    Get PDF
    The impact of sulphur limitation on the remobilization of endogenous S compounds during the rosette stage of oilseed rape, and the interactions with N availability on these processes, were examined using a long-term 34SO42− labelling method combined with a study of leaf senescence progression (using SAG12/Cab as a molecular indicator) and gene expression of the transporters, BnSultr4;1 and BnSultr4;2, involved in vacuolar sulphate efflux. After 51 d on hydroponic culture at 0.3 mM 34SO42− (1 atom% excess), the labelling was stopped and plants were subject for 28 d to High S-High N (HS-HN, control), Low S-High N (LS-HN) or Low S-Low N (LS-LN) conditions. Compared with the control, LS-HN plants showed delayed leaf senescence and, whilst the shoot growth and the foliar soluble protein amounts were not affected, S, 34S, and SO42− amounts in the old leaves declined rapidly and were associated with the up-regulation of BnSultr4;1. In LS-LN plants, shoot growth was reduced, leaf senescence was accelerated, and the rapid S mobilization in old leaves was accompanied by decreased 34S and SO42−, higher protein mobilization, and up-regulation of BnSultr4;2, but without any change of expression of BnSultr4;1. The data suggest that to sustain the S demand for growth under S restriction (i) vacuolar SO42− is specifically remobilized in LS-HN conditions without any acceleration of leaf senescence, (ii) SO42− mobilization is related to an up-regulation of BnSultr4;1 and/or BnSultr4;2 expression, and (iii) the relationship between sulphate mobilization and up-regulation of expression of BnSultr4 genes is specifically dependent on the N availability

    lpxC and yafS are the Most Suitable Internal Controls to Normalize Real Time RT-qPCR Expression in the Phytopathogenic Bacteria Dickeya dadantii

    Get PDF
    Background: Quantitative RT-PCR is the method of choice for studying, with both sensitivity and accuracy, the expression of genes. A reliable normalization of the data, using several reference genes, is critical for an accurate quantification of gene expression. Here, we propose a set of reference genes, of the phytopathogenic bacteria Dickeya dadantii and Pectobacterium atrosepticum, which are stable in a wide range of growth conditions. [br/] Results: We extracted, from a D. dadantii micro-array transcript profile dataset comprising thirty-two different growth conditions, an initial set of 49 expressed genes with very low variation in gene expression. Out of these, we retained 10 genes representing different functional categories, different levels of expression (low, medium, and high) and with no systematic variation in expression correlating with growth conditions. We measured the expression of these reference gene candidates using quantitative RT-PCR in 50 different experimental conditions, mimicking the environment encountered by the bacteria in their host and directly during the infection process in planta. The two most stable genes (ABF-0017965 (lpxC) and ABF-0020529 (yafS) were successfully used for normalization of RT-qPCR data. Finally, we demonstrated that the ortholog of lpxC and yafS in Pectobacterium atrosepticum also showed stable expression in diverse growth conditions. [br/] Conclusions: We have identified at least two genes, lpxC (ABF-0017965) and yafS (ABF-0020509), whose expressions are stable in a wide range of growth conditions and during infection. Thus, these genes are considered suitable for use as reference genes for the normalization of real-time RT-qPCR data of the two main pectinolytic phytopathogenic bacteria D. dadantii and P. atrosepticum and, probably, of other Enterobacteriaceae. Moreover, we defined general criteria to select good reference genes in bacteria

    A sex-chromosome mutation in Silene latifolia

    Get PDF
    Silene latifolia is dioecious, yet rare hermaphrodites have been found, and such natural mutants can provide valuable insight into genetic mechanisms. Here, we describe a hermaphrodite-inducing mutation that is almost certainly localized to the gynoecium-suppression region of the Y chromosome in S. latifolia. The mutant Y chromosome was passed through the megaspore, and the presence of two X chromosomes was not necessary for seed development in the parent. This result supports a lack of degeneration of the Y chromosome in S. latifolia, consistent with the relatively recent formation of the sex chromosomes in this species. When crossed to wild-type plants, hermaphrodites performed poorly as females, producing low seed numbers. When hermaphrodites were pollen donors, the sex ratio of offspring they produced through crosses was biased towards females. This suggests that hermaphroditic S. latifolia would fail to thrive and potentially explains the rarity of hermaphrodites in natural populations of S. latifolia. These results indicate that the Y chromosome in Silene latifolia remains very similar to the X, perhaps mostly differing in the primary sex determination regions

    Rapid De Novo Evolution of X Chromosome Dosage Compensation in Silene latifolia, a Plant with Young Sex Chromosomes

    Get PDF
    Evidence for dosage compensation in Silene latifolia, a plant with 10-million-year-old sex chromosomes, reveals that dosage compensation can evolve rapidly in young XY systems and is not an animal-specific phenomenon

    The use and limits of ITS data in the analysis of intraspecific variation in Passiflora L. (Passifloraceae)

    Get PDF
    The discovery and characterization of informative intraspecific genetic markers is fundamental for evolutionary and conservation genetics studies. Here, we used nuclear ribosomal ITS sequences to access intraspecific genetic diversity in 23 species of the genus Passiflora L. Some degree of variation was detected in 21 of these. The Passiflora and Decaloba (DC.) Rchb. subgenera showed significant differences in the sizes of the two ITS regions and in GC content, which can be related to reproductive characteristics of species in these subgenera. Furthermore, clear geographical patterns in the spatial distribution of sequence types were identified in six species. The results indicate that ITS may be a useful tool for the evaluation of intraspecific genetic variation in Passiflora

    Metatranscriptomics Reveals the Diversity of Genes Expressed by Eukaryotes in Forest Soils

    Get PDF
    Eukaryotic organisms play essential roles in the biology and fertility of soils. For example the micro and mesofauna contribute to the fragmentation and homogenization of plant organic matter, while its hydrolysis is primarily performed by the fungi. To get a global picture of the activities carried out by soil eukaryotes we sequenced 2×10,000 cDNAs synthesized from polyadenylated mRNA directly extracted from soils sampled in beech (Fagus sylvatica) and spruce (Picea abies) forests. Taxonomic affiliation of both cDNAs and 18S rRNA sequences showed a dominance of sequences from fungi (up to 60%) and metazoans while protists represented less than 12% of the 18S rRNA sequences. Sixty percent of cDNA sequences from beech forest soil and 52% from spruce forest soil had no homologs in the GenBank/EMBL/DDJB protein database. A Gene Ontology term was attributed to 39% and 31.5% of the spruce and beech soil sequences respectively. Altogether 2076 sequences were putative homologs to different enzyme classes participating to 129 KEGG pathways among which several were implicated in the utilisation of soil nutrients such as nitrogen (ammonium, amino acids, oligopeptides), sugars, phosphates and sulfate. Specific annotation of plant cell wall degrading enzymes identified enzymes active on major polymers (cellulose, hemicelluloses, pectin, lignin) and glycoside hydrolases represented 0.5% (beech soil)–0.8% (spruce soil) of the cDNAs. Other sequences coding enzymes active on organic matter (extracellular proteases, lipases, a phytase, P450 monooxygenases) were identified, thus underlining the biotechnological potential of eukaryotic metatranscriptomes. The phylogenetic affiliation of 12 full-length carbohydrate active enzymes showed that most of them were distantly related to sequences from known fungi. For example, a putative GH45 endocellulase was closely associated to molluscan sequences, while a GH7 cellobiohydrolase was closest to crustacean sequences, thus suggesting a potentially significant contribution of non-fungal eukaryotes in the actual hydrolysis of soil organic matter
    corecore