36 research outputs found
A survey of spectral models of gravity coupled to matter
This is a survey of the historical development of the Spectral Standard Model
and beyond, starting with the ground breaking paper of Alain Connes in 1988
where he observed that there is a link between Higgs fields and finite
noncommutative spaces. We present the important contributions that helped in
the search and identification of the noncommutative space that characterizes
the fine structure of space-time. The nature and properties of the
noncommutative space are arrived at by independent routes and show the
uniqueness of the Spectral Standard Model at low energies and the Pati-Salam
unification model at high energies.Comment: An appendix is added to include scalar potential analysis for a
Pati-Salam model. 58 Page
The Universal One-Loop Effective Action
We present the universal one-loop effective action for all operators of
dimension up to six obtained by integrating out massive, non-degenerate
multiplets. Our general expression may be applied to loops of heavy fermions or
bosons, and has been checked against partial results available in the
literature. The broad applicability of this approach simplifies one-loop
matching from an ultraviolet model to a lower-energy effective field theory
(EFT), a procedure which is now reduced to the evaluation of a combination of
matrices in our universal expression, without any loop integrals to evaluate.
We illustrate the relationship of our results to the Standard Model (SM) EFT,
using as an example the supersymmetric stop and sbottom squark Lagrangian and
extracting from our universal expression the Wilson coefficients of
dimension-six operators composed of SM fields.Comment: 30 pages, v2 contains additional comments and corrects typos, version
accepted for publication in JHE
Spectral Noncommutative Geometry Standard Model and all that
We review the approach to the standard model of particle interactions based
on spectral noncommutative geometry. The paper is (nearly) self-contained and
presents both the mathematical and phenomenological aspects. In particular the
bosonic spectral action and the fermionic action are discussed in detail, and
how they lead to phenomenology. We also discuss the Euclidean vs. Lorentz
issues and how to go beyond the standard model in this framework.Comment: Section 8 rewritten. Review article to appear on the Intenartional
Journal of Modern Physics
Actions for twisted spectral triple and the transition from the Euclidean to the Lorentzian
none4noThis is a review of recent results regarding the application of Connes' noncommutative geometry to the Standard Model, and beyond. By twisting (in the sense of Connes-Moscovici) the spectral triple of the Standard Model, one does not only get an extra scalar field which stabilises the electroweak vacuum, but also an unexpected 1-form field. By computing the fermionic action, we show how this field induces a transition from the Euclidean to the Lorentzian signature. Hints on a twisted version of the spectral action are also briefly mentioned.noneDevastato A.; Filaci M.; Martinetti P.; Singh D.Devastato, A.; Filaci, M.; Martinetti, P.; Singh, D
Lorentz signature and twisted spectral triples
Abstract We show how twisting the spectral triple of the Standard Model of elementary particles naturally yields the Krein space associated with the Lorentzian signature of spacetime. We discuss the associated spectral action, both for fermions and bosons. What emerges is a tight link between twists and Wick rotation
