492 research outputs found
Coastal versus open-ocean denitrification in the Arabian Sea
International audienceThe Arabian Sea contains one of the three major open-ocean denitrification zones in the world. In addition, pelagic denitrification also occurs over the inner and mid-shelf off the west coast of India. The major differences between the two environments are highlighted using the available data. The perennial open-ocean system occupies two orders of magnitude larger volume than the seasonal coastal system, however, the latter offers more extreme conditions (greater nitrate consumption leading to complete anoxia). Unlike the open-ocean system, the coastal system seems to have undergone a change (i.e., it has intensified) over the past few decades presumably due to enhanced nutrient loading from land. The two systems also differ from each other with regard to the modes of nitrous oxide (N2O) production: In the open-ocean suboxic zone, an accumulation of secondary nitrite (NO2?) is invariably accompanied by depletion of N2O whereas in the coastal suboxic zone high NO2? and very high N2O concentrations frequently co-occur, indicating, respectively, net consumption and net production of N2O by denitrifiers. The extents of heavier isotope enrichment in the combined nitrate and nitrite (NO3?+NO2?) pool and in N2O in reducing waters appear to be considerably smaller in the coastal region, reflecting more varied sources/sinks and/or different isotopic fractionation factors
Methods and systems for detection of radionuclides
Disclosed are materials and systems useful in determining the existence of radionuclides in an aqueous sample. The materials provide the dual function of both extraction and scintillation to the systems. The systems can be both portable and simple to use, and as such can beneficially be utilized to determine presence and optionally concentration of radionuclide contamination in an aqueous sample at any desired location and according to a relatively simple process without the necessity of complicated sample handling techniques. The disclosed systems include a one-step process, providing simultaneous extraction and detection capability, and a two-step process, providing a first extraction step that can be carried out in a remote field location, followed by a second detection step that can be carried out in a different location
Simultaneous nitrate and oxygen respiration in coastal sediments: Evidence for discrete diagenesis
Oxygen and nitrate porewater profiles from sediments of Puget Sound, the Washington continental margin, and the Chukchi Sea were determined using a whole core squeezing apparatus. The two oxidants were observed to have equal sediment penetration depths and similar profile shapes in nearly all cores. Oxygen and nitrate, therefore, behaved in a similar manner in these shallow sediments: an observation that is not consistent with existing models of sediment diagenesis. A two-dimensional model was constructed in which nearly all oxidant (O2 and NO3−)consumption took place in scattered, highly reactive discrete micro-sites. The model produced a sedimentary environment in which reactions at each micro-site were limited by oxidant concentrations with oxidant gradients extending well beyond the micro-sites into relatively nonreactive bulk sediments. Thus for a given depth surface within the sediment, oxygen concentrations were much lower at micro-sites than average concentrations on that surface. Furthermore, at most micro-sites oxygen concentrations were sufficiently low enough to permit simultaneous denitrification, which explained the apparent similarity between oxygen and nitrate concentration profiles within these sediments. The model suggests that a relatively few, short-lived reaction sites are responsible for most oxygen and nitrogen reduction within oxic sediments under shallow seas, and it is consistent with emerging concepts about the fate of organic carbon in coastal sediments
Large emissions from floodplain trees close the Amazon methane budget
Wetlands are the largest global source of atmospheric methane (CH4), a potent greenhouse gas. However, methane emission inventories from the Amazon floodplain, the largest natural geographic source of CH4 in the tropics, consistently underestimate the atmospheric burden of CH4 determined via remote sensing and inversion modelling, pointing to a major gap in our understanding of the contribution of these ecosystems to CH4 emissions. Here we report CH4 fluxes from the stems of 2,357 individual Amazonian floodplain trees from 13 locations across the central Amazon basin. We find that escape of soil gas through wetland trees is the dominant source of regional CH4 emissions. Methane fluxes from Amazon tree stems were up to 200 times larger than emissions reported for temperate wet forests6 and tropical peat swamp forests, representing the largest non-ebullitive wetland fluxes observed. Emissions from trees had an average stable carbon isotope value (δ13C) of −66.2 ± 6.4 per mil, consistent with a soil biogenic origin. We estimate that floodplain trees emit 15.1 ± 1.8 to 21.2 ± 2.5 teragrams of CH4 a year, in addition to the 20.5 ± 5.3 teragrams a year emitted regionally from other sources. Furthermore, we provide a ‘top-down’ regional estimate of CH4 emissions of 42.7 ± 5.6 teragrams of CH4 a year for the Amazon basin, based on regular vertical lower-troposphere CH4 profiles covering the period 2010–2013. We find close agreement between our ‘top-down’ and combined ‘bottom-up’ estimates, indicating that large CH4 emissions from trees adapted to permanent or seasonal inundation can account for the emission source that is required to close the Amazon CH4 budget. Our findings demonstrate the importance of tree stem surfaces in mediating approximately half of all wetland CH4 emissions in the Amazon floodplain, a region that represents up to one-third of the global wetland CH4 source when trees are combined with other emission sources
Recommended from our members
Radioanalytical Chemistry for Automated Nuclear Waste Process Monitoring
Comparison of different pulse shape discrimination methods was performed under two different experimental conditions and the best method was identified. Beta/gamma discrimination of 90Sr/90Y and 137Cs was performed using a phoswich detector made of BC400 (2.5 cm OD x 1.2 cm) and BGO (2.5 cm O.D. x 2.5 cm ) scintillators. Alpha/gamma discrimination of 210Po and 137Cs was performed using a CsI:Tl (2.8 x 1.4 x 1.4 cm3) scintillation crystal. The pulse waveforms were digitized with a DGF-4c (X-Ray Instrumentation Associates) and analyzed offline with IGOR Pro software (Wavemetrics, Inc.). The four pulse shape discrimination methods that were compared include: rise time discrimination, digital constant fraction discrimination, charge ratio, and constant time discrimination (CTD) methods. The CTD method is the ratio of the pulse height at a particular time after the beginning of the pulse to the time at the maximum pulse height. The charge comparison method resulted in a Figure of Merit (FoM) of 3.3 (9.9 % spillover) and 3.7 (0.033 % spillover) for the phoswich and the CsI:Tl scintillator setups, respectively. The CTD method resulted in a FoM of 3.9 (9.2 % spillover) and 3.2 (0.25 % spillover), respectively. Inverting the pulse shape data typically resulted in a significantly higher FoM than conventional methods, but there was no reduction in % spillover values. This outcome illustrates that the FoM may not be a good scheme for the quantification of a system to perform pulse shape discrimination. Comparison of several pulse shape discrimination (PSD) methods was performed as a means to compare traditional analog and digital PSD methods on the same scintillation pulses. The X-ray Instrumentation Associates DGF-4C (40 Msps, 14-bit) was used to digitize waveforms from a CsI:Tl crystal and BC400/BGO phoswich detector
Colorimetric detection of uranium in water
Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA
Productive performance, carcass and meat quality of intact and castrated gilts slaughtered at 106 or 122 kg BW
A total of 200 (Landrace3Large White dam3Pietrain3Large White sire) gilts of 5063 days of age (23.361.47 kg BW) were used to investigate the effects of castration (intact gilt, IG v. castrated gilt, CG) and slaughter weight (SW; 106 v. 122 kg BW) on productive performance, carcass and meat quality. Four treatments were arranged factorially and five replicates of 10 pigs each per treatment. Half of the gilts were ovariectomized at 58 days of age (8 days after the beginning of the trial at 29.861.64 kg BW), whereas the other half remained intact. The pigs were slaughtered at 106 or 122 kg BW. Meat samples were taken at Musculus longissimus thoracis at the level of the last rib and subcutaneous fat samples were taken at the tail insertion. For the entire experimental period, CG had higher ( P,0.05) BW gain and higher ( P,0.001) backfat and Musculus gluteus medius fat thickness than IG. However, IG had higher ( P,0.05) loin and trimmed primal cut yields than CG. Meat quality was similar for IG and CG but the proportion of linoleic acid in subcutaneous fat was higher ( P,0.001) for IG. Pigs slaughtered at 122 kg BW had higher ( P,0.001) feed intake and poorer feed efficiency than pigs slaughtered at 106 kg BW. An increase in SW improved ( P,0.001) carcass yield but decreased ( P,0.05) trimmed primal cut yield. Meat from pigs slaughtered at the heavier BW was redder (a*; P,0.001) and had more ( P,0.01) intramuscular fat and less thawing ( P,0.05) and cooking ( P,0.10) loss than meat from pigs slaughtered at the lighter BW. In addition, pigs slaughtered at 122 kg BW had less ( P,0.01) linoleic acid content in subcutaneous fat than pigs slaughtered at 106 kg BW. Castration of gilts and slaughtering at heavier BW are useful practices for the production of heavy pigs destined to the dry-cured industry in which a certain amount of fat in the carcass is required. In contrast, when the carcasses are destined to fresh meat production, IG slaughtered at 106 kg BW is a more efficient alternative
Polymer Sensors for the Quantification of Waterborne Uranium
Clandestine activities involving the separation, concentration or manipulation of special nuclear material for the express purpose of developing a weapon of mass destruction is likely to result in the contamination of environmental water sources. The capability to conduct isotopic analyses for waterborne special nuclear material, like uranium, would be a powerful nuclear forensics tool. Despite widespread interest, there currently is no on-line or field-able measurement system available for low-level quantification of uranium in aqueous solutions. A recent development in environmental sensing is a portable, flow cell detector that utilizes extractive scintillating (ES) resin. The ES resin serves the dual purpose of (1) concentrating the radionuclide of interest and (2) serving as a radiation transducer. Currently, such resins are produced by physically absorbing organic extractants and fluors into a polymer matrix. Unfortunately, this approach yields resins with poor stability as the active components leach from the resin over time. This contribution describes our work to increase resin stability by synthesizing ES resin in which the active components are bound covalently within the polymer matrix. The extraction and fluorescence properties of the resin were studied separately before the resin was applied in flow cell detector where detection efficiencies of 40% were achieved
Denitrification rates and excess nitrogen gas concentrations in the Arabian Sea oxygen deficient zone
Rates of canonical, i.e. heterotrophic, water-column denitrification were measured by 15N incubation techniques at a number of coastal and open ocean stations in the Arabian Sea. Measurements of N2:Ar gas ratios were also made to obtain independent estimates of N2 excess resulting from denitrification. Measured denitrification rates (15NO3-→15-14N2) at open ocean stations averaged 9.1±1.0 nmol N l-1 d-1 (n=15), and coastal rates averaged 33.2±12.4 nmol N l-1 d-1 (n=18). When extrapolated to the entire Arabian Sea, deep measurements within the offshore perennial suboxic zone indicate an overall denitrification rate of 41 Tg N a-1±18 Tg N a-1, which is within the range (10-44 Tg N a-1) of previous estimates for canonical denitrification in the region based on stoichiometric calculations and electron transport system activity. Nitrogen excess gas measurements predict a larger nitrogen anomaly than estimated by classical stoichiometric methods (maximum anomaly=23 μg at N l-1 vs. 13 μg at N l-1, respectively). This mismatch may result from incorrect assumptions of Redfield stoichiometry inherent in the nitrate deficit calculation, inputs of new nitrogen through N-fixation, N2 contributions from sedimentary denitrification along continental margins, the anammox reaction, and metal catalyzed denitrification reactions. Nevertheless, if denitrification is defined as the conversion of combined nitrogen to a gaseous end product, then the data suggest that denitrification in the Arabian Sea may have been underestimated so far
- …
