13 research outputs found

    Characteristics of successfully implemented telemedical applications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There has been an increased interest in the use of telemedical applications in clinical practice in recent years. Considerable effort has been invested in trials and experimental services. Yet, surprisingly few applications have continued beyond the research and development phase. The aim of this study is to explore characteristics of successfully implemented telemedical applications.</p> <p>Methods</p> <p>An extensive search of telemedicine literature was conducted in order to identify relevant articles. Following a defined selection process, a small number of articles were identified that described characteristics of successfully implemented telemedical applications. These articles were analysed qualitatively, drawing on central procedures from Grounded Theory (GT), including condensation and categorisation. The analysis resulted in a description of features found to be of importance for a successful implementation of telemedicine. Subsequently, these features were discussed in light of Science and Technology studies (STS) and the concept of 'social negotiation'.</p> <p>Results</p> <p>Telemedical applications introduced into routine practice are typically characterised by the following six features: 1) local service delivery problems have been clearly stated, 2) telemedicine has been seen as a benefit, 3) telemedicine has been seen as a solution to political and medical issues, 4) there was collaboration between promoters and users, 5) issues regarding organizational and technological arrangements have been addressed, and 6) the future operation of the service has been considered.</p> <p>Conclusion</p> <p>Our findings support research arguing that technologies are not fixed entities moving from invention through diffusion and into routine use. Rather, it is the interplay between technical and social factors that produces a particular outcome. The success of a technology depends on how this interplay is managed during the process of implementation.</p

    Discovering energy-transfer paths in laser crystals

    No full text
    We demonstrate a new technique for discovering the main mechanisms of energy transfer inside the active It consists of measuring the harmonic content of fluorescence when the pump In particular we discuss excited-state absorption and upconversion and present the equations for the fundamental and the second harmonic for both of these processes. We measured the fluorescence from the S-4(3/2) multiplet of Er3+ in three hosts, YLF, YAG, and CaSGG, with different doping. The results of the new method show that we are able to identify which multiplets transfer their energy to the observed one and through which process. (C) 1997 Optical Society of America
    corecore