3,197 research outputs found
Neutrinos with a linear seesaw mechanism in a scenario of gauged B-L symmetry
We consider a mechanism for neutrino mass generation, based on a local B-L
extension of the standard model, which becomes a linear seesaw regime for light
neutrinos after spontaneous symmetry breaking. The spectrum of extra particles
includes heavy neutrinos with masses near the TeV scale and a heavy Z' boson,
as well as three extra neutral scalars and a charged scalar pair. We study the
production and decays of these heavy particles at the LHC. Z' will decay mainly
into heavy neutrino pairs or charged lepton pairs, similar to other low scale
seesaw scenarios with local B-L, while the phenomenology of the extra scalars
is what distinguishes the linear seesaw from the previous models. One of the
neutral scalars is produced by Z' Z' fusion and decays mainly into vector boson
pairs, the other two neutral scalars are less visible as they decay only into
heavy or light neutrino pairs, and finally the charged scalars will decay
mainly into charged leptons and missing energy.Comment: 15 pages, 2 tables, 5 figure
Technicolor contribution to lepton + photon + missing energy events at the Tevatron
Events with one lepton, one photon and missing energy are the subject of
recent searches at the Fermilab Tevatron. We compute possible contributions to
these type of events from the process p pbar --> photon l nu_l nu_tau
nubar_tau, where l=e,mu in the context of a Low Scale Technicolor Model. We
find that with somewhat tighter cuts than the ones used in the CDF search, it
could be possible to either confirm or exclude this model in a small region of
its parameter space.Comment: 4 pages, 3 figures. Improved text and figures, including comments and
new reference
Neutrino emission rates in highly magnetized neutron stars revisited
Magnetars are a subclass of neutron stars whose intense soft-gamma-ray bursts
and quiescent X-ray emission are believed to be powered by the decay of a
strong internal magnetic field. We reanalyze neutrino emission in such stars in
the plausibly relevant regime in which the Landau band spacing of both protons
and electrons is much larger than kT (where k is the Boltzmann constant and T
is the temperature), but still much smaller than the Fermi energies. Focusing
on the direct Urca process, we find that the emissivity oscillates as a
function of density or magnetic field, peaking when the Fermi level of the
protons or electrons lies about 3kT above the bottom of any of their Landau
bands. The oscillation amplitude is comparable to the average emissivity when
the Landau band spacing mentioned above is roughly the geometric mean of kT and
the Fermi energy (excluding mass), i. e., at fields much weaker than required
to confine all particles to the lowest Landau band. Since the density and
magnetic field strength vary continuously inside the neutron star, there will
be alternating surfaces of high and low emissivity. Globally, these
oscillations tend to average out, making it unclear whether there will be any
observable effects.Comment: 7 pages, 2 figures; accepted for publication in Astronomy &
Astrophysic
The Effect of Composite Resonances on Higgs decay into two photons
In scenarios of strongly coupled electroweak symmetry breaking, heavy
composite particles of different spin and parity may arise and cause observable
effects on signals that appear at loop levels. The recently observed process of
Higgs to at the LHC is one of such signals. We study the new
constraints that are imposed on composite models from ,
together with the existing constraints from the high precision electroweak
tests. We use an effective chiral Lagrangian to describe the effective theory
that contains the Standard Model spectrum and the extra composites below the
electroweak scale. Considering the effective theory cutoff at TeV, consistency with the and parameters and the newly
observed can be found for a rather restricted range of
masses of vector and axial-vector composites from TeV to TeV and
TeV to TeV, respectively, and only provided a non-standard kinetic
mixing between the and fields is included.Comment: 30 pages, 10 figures. Version for publication in European Physical
Journal
A new signature for color octet pseudoscalars at the LHC
Color octet (pseudo)scalars, if they exist, will be copiously produced at the
CERN Large Hadron Collider (LHC). However, their detection can become a very
challenging task. In particular, if their decay into a pair of top quarks is
kinematically forbidden, the main decay channel would be into two jets, with a
very large background. In this Brief Report we explore the possibility of using
anomaly-induced decays of the color octet pseudoscalars into gauge bosons to
find them at the LHC.Comment: 4 pages, 2 figures. New references adde
Constraints on vector resonances from a strong Higgs sector
We consider a scenario of a composite Higgs arising from a strong sector. We
assume that the lowest lying composite states are the Higgs scalar doublet and
a massive vector triplet, whose dynamics below the compositeness scale are
described in terms of an effective Lagrangian. Electroweak symmetry breaking
takes place through a vacuum expectation value just as in the Standard Model,
but with the vector resonances strongly coupled to the Higgs field. We
determine the constraints on this scenario imposed by (i) the Higgs diphoton
decay rate, (ii) the electroweak precision tests and (iii) searches of heavy
resonances at the LHC in the final states and (),
, , , , , and . We find that the
heavy vector resonances should have masses that are constrained to be in the
range - TeV. On the other hand, the mixing of the heavy vectors with
the Standard Model gauge bosons is constrained to be in the range
, which is consistent with the assumption that the
Higgs couples weakly to the Standard sector, even though it couples strongly to
the heavy vector resonances.Comment: 14 pages, 18 figures. arXiv admin note: text overlap with
arXiv:1506.0363
Red Noise in Anomalous X-ray Pulsar Timing Residuals
Anomalous X-ray Pulsars (AXPs), thought to be magnetars, exhibit poorly
understood deviations from a simple spin-down called "timing noise". AXP timing
noise has strong low-frequency components which pose significant challenges for
quantification. We describe a procedure for extracting two quantities of
interest, the intensity and power spectral index of timing noise. We apply this
procedure to timing data from three sources: a monitoring campaign of five
AXPs, observations of five young pulsars, and the stable rotator PSR B1937+21.Comment: submitted to the proceedings of the "40 Years of Pulsars" conferenc
Chandra and RXTE Observations of 1E 1547.0-5408: Comparing the 2008 and 2009 Outbursts
We present results from observations of the magnetar 1E 1547.0-5408 (SGR
J1550-5418) taken with the Chandra X-ray Observatory and the Rossi X-ray Timing
Explorer (RXTE) following the source's outbursts in 2008 October and 2009
January. During the time span of the Chandra observations, which covers days 4
through 23 and days 2 through 16 after the 2008 and 2009 events, respectively,
the source spectral shape remained stable, while the pulsar's spin-down rate in
the same span in 2008 increased by a factor of 2.2 as measured by RXTE. The
lack of spectral variation suggests decoupling between magnetar spin-down and
radiative changes, hence between the spin-down-inferred magnetic field strength
and that inferred spectrally. We also found a strong anti-correlation between
the phase-averaged flux and the pulsed fraction in the 2008 and 2009 Chandra
data, but not in the pre-2008 measurements. We discuss these results in the
context of the magnetar model.Comment: 4 figures, accepted for publication in Ap
- …
