3,197 research outputs found

    Neutrinos with a linear seesaw mechanism in a scenario of gauged B-L symmetry

    Full text link
    We consider a mechanism for neutrino mass generation, based on a local B-L extension of the standard model, which becomes a linear seesaw regime for light neutrinos after spontaneous symmetry breaking. The spectrum of extra particles includes heavy neutrinos with masses near the TeV scale and a heavy Z' boson, as well as three extra neutral scalars and a charged scalar pair. We study the production and decays of these heavy particles at the LHC. Z' will decay mainly into heavy neutrino pairs or charged lepton pairs, similar to other low scale seesaw scenarios with local B-L, while the phenomenology of the extra scalars is what distinguishes the linear seesaw from the previous models. One of the neutral scalars is produced by Z' Z' fusion and decays mainly into vector boson pairs, the other two neutral scalars are less visible as they decay only into heavy or light neutrino pairs, and finally the charged scalars will decay mainly into charged leptons and missing energy.Comment: 15 pages, 2 tables, 5 figure

    Technicolor contribution to lepton + photon + missing energy events at the Tevatron

    Full text link
    Events with one lepton, one photon and missing energy are the subject of recent searches at the Fermilab Tevatron. We compute possible contributions to these type of events from the process p pbar --> photon l nu_l nu_tau nubar_tau, where l=e,mu in the context of a Low Scale Technicolor Model. We find that with somewhat tighter cuts than the ones used in the CDF search, it could be possible to either confirm or exclude this model in a small region of its parameter space.Comment: 4 pages, 3 figures. Improved text and figures, including comments and new reference

    Neutrino emission rates in highly magnetized neutron stars revisited

    Full text link
    Magnetars are a subclass of neutron stars whose intense soft-gamma-ray bursts and quiescent X-ray emission are believed to be powered by the decay of a strong internal magnetic field. We reanalyze neutrino emission in such stars in the plausibly relevant regime in which the Landau band spacing of both protons and electrons is much larger than kT (where k is the Boltzmann constant and T is the temperature), but still much smaller than the Fermi energies. Focusing on the direct Urca process, we find that the emissivity oscillates as a function of density or magnetic field, peaking when the Fermi level of the protons or electrons lies about 3kT above the bottom of any of their Landau bands. The oscillation amplitude is comparable to the average emissivity when the Landau band spacing mentioned above is roughly the geometric mean of kT and the Fermi energy (excluding mass), i. e., at fields much weaker than required to confine all particles to the lowest Landau band. Since the density and magnetic field strength vary continuously inside the neutron star, there will be alternating surfaces of high and low emissivity. Globally, these oscillations tend to average out, making it unclear whether there will be any observable effects.Comment: 7 pages, 2 figures; accepted for publication in Astronomy & Astrophysic

    The Effect of Composite Resonances on Higgs decay into two photons

    Get PDF
    In scenarios of strongly coupled electroweak symmetry breaking, heavy composite particles of different spin and parity may arise and cause observable effects on signals that appear at loop levels. The recently observed process of Higgs to γγ\gamma \gamma at the LHC is one of such signals. We study the new constraints that are imposed on composite models from HγγH\to \gamma\gamma, together with the existing constraints from the high precision electroweak tests. We use an effective chiral Lagrangian to describe the effective theory that contains the Standard Model spectrum and the extra composites below the electroweak scale. Considering the effective theory cutoff at Λ=4πv3\Lambda = 4\pi v \sim 3 TeV, consistency with the TT and SS parameters and the newly observed HγγH\to \gamma\gamma can be found for a rather restricted range of masses of vector and axial-vector composites from 1.51.5 TeV to 1.71.7 TeV and 1.81.8 TeV to 1.91.9 TeV, respectively, and only provided a non-standard kinetic mixing between the W3W^{3} and B0B^{0} fields is included.Comment: 30 pages, 10 figures. Version for publication in European Physical Journal

    A new signature for color octet pseudoscalars at the LHC

    Full text link
    Color octet (pseudo)scalars, if they exist, will be copiously produced at the CERN Large Hadron Collider (LHC). However, their detection can become a very challenging task. In particular, if their decay into a pair of top quarks is kinematically forbidden, the main decay channel would be into two jets, with a very large background. In this Brief Report we explore the possibility of using anomaly-induced decays of the color octet pseudoscalars into gauge bosons to find them at the LHC.Comment: 4 pages, 2 figures. New references adde

    Constraints on vector resonances from a strong Higgs sector

    Full text link
    We consider a scenario of a composite Higgs arising from a strong sector. We assume that the lowest lying composite states are the Higgs scalar doublet and a massive vector triplet, whose dynamics below the compositeness scale are described in terms of an effective Lagrangian. Electroweak symmetry breaking takes place through a vacuum expectation value just as in the Standard Model, but with the vector resonances strongly coupled to the Higgs field. We determine the constraints on this scenario imposed by (i) the Higgs diphoton decay rate, (ii) the electroweak precision tests and (iii) searches of heavy resonances at the LHC in the final states l+ll^+l^- and lνll\nu_l (l=e,μl=e,\mu), τ+τ\tau^+\tau^-, jjjj, ttˉt\bar{t}, WZWZ, WWWW, WHWH and ZHZH. We find that the heavy vector resonances should have masses that are constrained to be in the range 2.12.1 - 33 TeV. On the other hand, the mixing of the heavy vectors with the Standard Model gauge bosons is constrained to be in the range tanϑ0.10.3\tan\vartheta\sim 0.1 - 0.3, which is consistent with the assumption that the Higgs couples weakly to the Standard sector, even though it couples strongly to the heavy vector resonances.Comment: 14 pages, 18 figures. arXiv admin note: text overlap with arXiv:1506.0363

    Red Noise in Anomalous X-ray Pulsar Timing Residuals

    Full text link
    Anomalous X-ray Pulsars (AXPs), thought to be magnetars, exhibit poorly understood deviations from a simple spin-down called "timing noise". AXP timing noise has strong low-frequency components which pose significant challenges for quantification. We describe a procedure for extracting two quantities of interest, the intensity and power spectral index of timing noise. We apply this procedure to timing data from three sources: a monitoring campaign of five AXPs, observations of five young pulsars, and the stable rotator PSR B1937+21.Comment: submitted to the proceedings of the "40 Years of Pulsars" conferenc

    Chandra and RXTE Observations of 1E 1547.0-5408: Comparing the 2008 and 2009 Outbursts

    Full text link
    We present results from observations of the magnetar 1E 1547.0-5408 (SGR J1550-5418) taken with the Chandra X-ray Observatory and the Rossi X-ray Timing Explorer (RXTE) following the source's outbursts in 2008 October and 2009 January. During the time span of the Chandra observations, which covers days 4 through 23 and days 2 through 16 after the 2008 and 2009 events, respectively, the source spectral shape remained stable, while the pulsar's spin-down rate in the same span in 2008 increased by a factor of 2.2 as measured by RXTE. The lack of spectral variation suggests decoupling between magnetar spin-down and radiative changes, hence between the spin-down-inferred magnetic field strength and that inferred spectrally. We also found a strong anti-correlation between the phase-averaged flux and the pulsed fraction in the 2008 and 2009 Chandra data, but not in the pre-2008 measurements. We discuss these results in the context of the magnetar model.Comment: 4 figures, accepted for publication in Ap
    corecore