102 research outputs found

    Static and non-static quantum effects in two-dimensional dilaton gravity

    Get PDF
    We study backreaction effects in two-dimensional dilaton gravity. The backreaction comes from an R2R^2 term which is a part of the one-loop effective action arising from massive scalar field quantization in a certain approximation. The peculiarity of this term is that it does not contribute to the Hawking radiation of the classical black hole solution of the field equations. In the static case we examine the horizon and the physical singularity of the new black hole solutions. Studying the possibility of time dependence we see the generation of a new singularity. The particular solution found still has the structure of a black hole, indicating that non-thermal effects cannot lead, at least in this approximation, to black hole evaporation.Comment: 10 pages, no figure

    Intraperitoneal Delivery of Acetate-Encapsulated Liposomal Nanoparticles for Neuroprotection of the Penumbra in a Rat Model of Ischemic Stroke

    Get PDF
    Ischemic stroke is a devastating condition, with metabolic derangement and persistent inflammation enhancing the initial insult of ischaemia. In this study, we investigated the effects of acetate, a metabolite that modulates many pathways including inflammation to attenuate brain injury. As acetate has a short blood half-life and high amounts irritate the gastrointestinal tract, acetate was administered encapsulated in a liposomal nanoparticle (liposomal-encapsulated acetate, LITA). Transient ischemic stroke was induced by 90 mins middle-cerebral artery occlusion (MCAO) in Sprague-Dawley rats and LITA or control liposomes given intraperitoneally at occlusion and daily for up to two weeks post-MCAO. Magnetic resonance imaging (MRI) was used to estimate lesion volume at 24 h, 1 and 2 weeks post-MCAO and anterior lateral ventricular volume (ALVv) at 2 weeks post-MCAO. Locomotive behaviour was tested prior to the final MRI scan. After the final scan, brains were collected and immunohistochemistry performed. Lesion volumes were decreased by ~80% from the 24 h to one-week post-MCAO, in both control and LITA groups (P<0.05). However, the lesion was increased by ~50% over the subsequent 1 to 2 weeks after MCAO in the control group (from 24.1±10.0 to 58.7±28.6 mm3; P<0.05) but remained unchanged in the LITA group. ALVv were also attenuated by LITA treatment at 2 weeks post-MCAO (177.2±11.9% and 135.3±10.9% of contralateral ALVv for control and LITA groups, respectively; P<0.05). LITA-treated animals also appeared to have improved motor activity, moving with greater average velocity than control animals. Microglial immunoreactivity was ~40% lower in the LITA group compared to the control group (P<0.05), but LITA did not modulate neurogenesis, apoptosis, histone acetylation and lipid peroxidation. In conclusion, LITA appears to attenuate the harmful chronic neuroinflammation observed during brain remodeling after a focal ischemic insult

    Regional distributions of iron, copper and zinc and their relationships with glia in a normal aging mouse model

    Get PDF
    Microglia and astrocytes can quench metal toxicity to maintain tissue homeostasis, but with age, increasing glial dystrophy alongside metal dyshomeostasis may predispose the aged brain to acquire neurodegenerative diseases. The aim of the present study was to investigate age-related changes in brain metal deposition along with glial distribution in normal C57Bl/6J mice aged 2-, 6-, 19- and 27-months (n = 4/age). Using synchrotron-based X-ray fluorescence elemental mapping, we demonstrated age-related increases in iron, copper, and zinc in the basal ganglia (p &lt; 0.05). Qualitative assessments revealed age-associated increases in iron, particularly in the basal ganglia and zinc in the white matter tracts, while copper showed overt enrichment in the choroid plexus/ventricles. Immunohistochemical staining showed augmented numbers of microglia and astrocytes, as a function of aging, in the basal ganglia (p &lt; 0.05). Moreover, qualitative analysis of the glial immunostaining at the level of the fimbria and ventral commissure, revealed increments in the number of microglia but decrements in astroglia, in older aged mice. Upon morphological evaluation, aged microglia and astroglia displayed enlarged soma and thickened processes, reminiscent of dystrophy. Since glial cells have major roles in metal metabolism, we performed linear regression analysis and found a positive association between iron (R 2 = 0.57, p = 0.0008), copper (R 2 = 0.43, p = 0.0057), and zinc (R 2 = 0.37, p = 0.0132) with microglia in the basal ganglia. Also, higher levels of iron (R 2 = 0.49, p = 0.0025) and zinc (R 2 = 0.27, p = 0.040) were correlated to higher astroglia numbers. Aging was accompanied by a dissociation between metal and glial levels, as we found through the formulation of metal to glia ratios, with regions of basal ganglia being differentially affected. For example, iron to astroglia ratio showed age-related increases in the substantia nigra and globus pallidus, while the ratio was decreased in the striatum. Meanwhile, copper and zinc to astroglia ratios showed a similar regional decline. Our findings suggest that inflammation at the choroid plexus, part of the blood-cerebrospinal-fluid barrier, prompts accumulation of, particularly, copper and iron in the ventricles, implying a compromised barrier system. Moreover, age-related glial dystrophy/senescence appears to disrupt metal homeostasis, likely due to induced oxidative stress, and hence increase the risk of neurodegenerative diseases. </p

    Gallstone Obstructive Ileus 3 Years Post-cholecystectomy to a Patient with an Old Ileoileal Anastomosis

    Get PDF
    The present case is one of gallstone obstructive ileus due to gallstones 3 yr after laparoscopic cholecystectomy. It is interesting because of the sex of the patient, the fact that ileus occurred 3 yr after cholecystectomy and that the localization of the obstruction was an old side-to-side ileoileal anastomosis due to a diverticulectomy following intussusception of Meckels' diverticulum at the age of 3

    Mortality and Effect on Growth of Artemia franciscana Exposed to Two Common Organic Pollutants

    Get PDF
    Acute toxicity and inhibition on growth of Artemia franciscana nauplii (Instar I-II) after exposure to the reference toxicants bisphenol a (BPA) and sodium dodecyl sulfate (SDS) were studied. LC50 values were calculated and differences in body growth were recorded after 24, 48, and 72 h of exposure to the toxicants. The results indicated that BPA had lower toxicity than SDS. Development of the nauplii was clearly influenced by duration of exposure. Growth inhibition was detected for both toxicants. Abnormal growth of the central eye of several Artemia nauplii after 72 h of exposure to BPA was also detected. Our results indicate that growth inhibition could be used as a valid endpoint for toxicity studies

    Development of geraniol-loaded liposomal nanoformulations against salmonella colonization in the pig gut

    Get PDF
    Salmonella is a global health threat, with pig production being one of the main sources of human salmonellosis. The current study investigated the antivirulence properties of geraniol for inhibiting the in vitro colonization of Salmonella. The minimum inhibitory (MIC) and bactericidal concentrations (MBC) of geraniol against Salmonella typhimurium followed by the sub-MIC of geraniol were determined. Results provided clear evidence that geraniol at 1/8 MIC can be used as an effective, non-toxic antivirulence compound to inhibit virulence factors (motility, adhesion, and invasiveness) affecting the colonization of S. typhimurium on IPEC-J2 cells. Additionally, the findings signified that microfluidics is an emerging technology suitable for the preparation of stable liposomes with a small size (<200 nm) and high encapsulation efficiency (EE) of up to 92.53%, which can act as effective carriers of geraniol into the pig gastrointestinal tract (GIT), targeting Salmonella, preventing colonization, and thus increasing the safety of the food supply chain

    Volatilome of chill-stored European Seabass (Dicentrarchus labrax) fillets and Atlantic Salmon (Salmo salar) slices under modified atmosphere packaging

    Get PDF
    Fish spoilage occurs due to production of metabolites during storage, from bacterial action and chemical reactions, which leads to sensory rejection. Investigating the volatilome profile can reveal the potential spoilage markers. The evolution of volatile organic molecules during storage of European seabass (Dicentrarchus labrax) fillets and Atlantic salmon (Salmo salar) slices under modified atmosphere packaging at 2 °C was recorded by solid-phase microextraction combined with gas chromatography-mass spectrometry. Total volatile basic nitrogen (TVB-N), microbiological, and sensory changes were also monitored. The shelf life of seabass fillets and salmon slices was 10.5 days. Pseudomonas and H2S-producing bacteria were the dominant microorganisms in both fish. TVB-N increased from the middle of storage, but never reached concentrations higher than the regulatory limit of 30–35 mg N/100 g. The volatilome consisted of a number of aldehydes, ketones, alcohols and esters, common to both fish species. However, different evolution patterns were observed, indicating the effect of fish substrate on microbial growth and eventually the generation of volatiles. The compounds 3-hydroxy-2-butanone, 2,3-butanediol, 2,3-butanedione and acetic acid could be proposed as potential spoilage markers. The identification and quantification of the volatilities of specific fish species via the development of a database with the fingerprint of fish species stored under certain storage conditions can help towards rapid spoilage assessment

    ATP signalling in epilepsy

    Get PDF
    This paper focuses on a role for ATP neurotransmission and gliotransmission in the pathophysiology of epileptic seizures. ATP along with gap junctions propagates the glial calcium wave, which is an extraneuronal signalling pathway in the central nervous system. Recently astrocyte intercellular calcium waves have been shown to underlie seizures, and conventional antiepileptic drugs have been shown to attenuate these calcium waves. Blocking ATP-mediated gliotransmission, therefore, represents a potential target for antiepileptic drugs. Furthermore, while knowledge of an antiepileptic role for adenosine is not new, a recent study showed that adenosine accumulates from the hydrolysis of accumulated ATP released by astrocytes and is believed to inhibit distant synapses by acting on adenosine receptors. Such a mechanism is consistent with a surround-inhibitory mechanism whose failure would predispose to seizures. Other potential roles for ATP signalling in the initiation and spread of epileptiform discharges may involve synaptic plasticity and coordination of synaptic networks. We conclude by making speculations about future developments

    Bio-inspired algorithm optimization of neural network for the prediction of Dubai crude oil price

    Get PDF
    Previous studies proposed several bio-inspired algorithms for the optimization of Neural Network (NN) to avoid local minima and to improve accuracy and convergence speed. To advance the performance of NN, a new bio-inspired algorithm called Flower Pollination Algorithm (FPA) is used to optimize the weights and bias of NN due to its ability to explore very large search space and frequent chosen of similar solution. The FPA optimized NN (FPNN) was applied to build a model for the prediction of Dubai crude oil price unlike previous studies that mainly focus on theWest Texas Intermediate and Brent crude oil price benchmarks. Result
    corecore