1,244 research outputs found

    Consciousness makes a difference: A reluctant dualist’s confession

    Get PDF
    This paper’s outline is as follows. In sections 1-3 I give an exposi-tion of the Mind-Body Problem, with emphasis on what I believe to be the heart of the problem, namely, the Percepts-Qualia Nonidentity and its incompatibility with the Physical Closure Paradigm. In 4 I present the “Qualia Inaction Postulate” underlying all non-interactionist theo-ries that seek to resolve the above problem. Against this convenient postulate I propose in section 5 the “Bafflement Ar¬gument,” which is this paper's main thesis. Sections 6-11 critically dis¬cuss attempts to dismiss the Bafflement Argument by the “Baf¬flement=Mis¬perception Equation.” Section 12 offers a refutation of all such attempts in the form of a concise “Asymmetry Proof.” Section 13 points out the bearing of the Bafflement Argument on the evolutionary role of consciousness while section 14 acknowledges the price that has to be paid for it in terms of basic physical principles. Section 15 summarizes the paper, pointing out the inescapability of interactionist dualism

    Nonlocal Effects of Partial Measurements and Quantum Erasure

    Get PDF
    Partial measurement turns the initial superposition not into a definite outcome but into a greater probability for it. The probability can approach 100%, yet the measurement can undergo complete quantum erasure. In the EPR setting, we prove that i) every partial measurement nonlocally creates the same partial change in the distant particle; and ii) every erasure inflicts the same erasure on the distant particle's state. This enables an EPR experiment where the nonlocal effect does not vanish after a single measurement but keeps "traveling" back and forth between particles. We study an experiment in which two distant particles are subjected to interferometry with a partial "which path" measurement. Such a measurement causes a variable amount of correlation between the particles. A new inequality is formulated for same-angle polarizations, extending Bell's inequality for different angles. The resulting nonlocality proof is highly visualizable, as it rests entirely on the interference effect. Partial measurement also gives rise to a new form of entanglement, where the particles manifest correlations of multiple polarization directions. Another novelty in that the measurement to be erased is fully observable, in contrast to prevailing erasure techniques where it can never be observed. Some profound conceptual implications of our experiment are briefly pointed out.Comment: To be published in Phys. Rev. A 63 (2001). 19 pages, 12 figures, RevTeX 3.

    Type I Superconductivity upon Monopole Condensation in Seiberg-Witten Theory

    Full text link
    We study the confinement scenario in N=2 supersymmetric SU(2) gauge theory near the monopole point upon breaking of N=2 supersymmetry by the adjoint matter mass term. We confirm claims made previously that the Abrikosov-Nielsen-Olesen string near the monopole point fails to be a BPS state once next-to-leading corrections in the adjoint mass parameter taken into account. Our results shows that type I superconductivity arises upon monopole condensation. This conclusion allows us to make qualitative predictions on the structure of the hadron mass spectrum near the monopole point.Comment: LaTex, 25 pages. Minor changes. To be published in NP

    Observational evidence for the shrinking of bright maser spots

    Full text link
    The nature of maser emission means that the apparent angular size of an individual maser spot is determined by the amplification process as well as by the instrinsic size of the emitting cloud. Highly sensitive MERLIN radio interferometry images spatially and spectrally resolve water maser clouds around evolved stars. We measured the properties of clouds around the red supergiant S Per and the AGB stars IK Tau, RT Vir, U Her and U Ori, to test maser beaming theory. Spherical clouds are expected to produce an inverse relationship between maser intensity and apparent size, which would not be seen from cylindrical or slab-like regions. We analysed the maser properties, in order to estimate the saturation state, and investigated the variation of observed spot size with intensity and across the spectral line profiles. Circumstellar masers emanate from discrete clouds from about one to 20 AU in diameter depending on the star. Most of the maser features have negative excitation temperatures close to zero and modest optical depths, showing that they are mainly unsaturated. Around S Per and (at most epochs) RT Vir and IK Tau, the maser component size shrinks with increasing intensity. In contrast, the masers around U Ori and U Her tend to increase in size, with a larger scatter. The water masers from S Per, RT Vir and IK Tau are mainly beamed into spots with an observed angular size much smaller than the emitting clouds and smallest of all at the line peaks. This suggests that the masers are amplification-bounded, emanating from approximately spherical clouds. Many of the masers around U Her and U Ori have apparent sizes which are more similar to the emitting clouds and have less or no dependence on intensity, suggesting that these masers are matter-bounded. This is consistent with an origin in flattened clouds and these two stars have shown other behaviour indicating the presence of shocks.Comment: 17 pages, 26 figure files, accepted by A&A 2010 Oct 2

    Detections of water ice, hydrocarbons, and 3.3um PAH in z~2 ULIRGs

    Get PDF
    We present the first detections of the 3um water ice and 3.4um amorphous hydrocarbon (HAC) absorption features in z~2 ULIRGs. These are based on deep rest-frame 2-8um Spitzer IRS spectra of 11 sources selected for their appreciable silicate absorption. The HAC-to-silicate ratio for our z~2 sources is typically higher by a factor of 2-5 than that observed in the Milky Way. This HAC `excess' suggests compact nuclei with steep temperature gradients as opposed to predominantly host obscuration. Beside the above molecular absorption features, we detect the 3.3um PAH emission feature in one of our sources with three more individual spectra showing evidence for it. Stacking analysis suggests that water ice, hydrocarbons, and PAH are likely present in the bulk of this sample even when not individually detected. The most unexpected result of our study is the lack of clear detections of the 4.67um CO gas absorption feature. Only three of the sources show tentative signs of this feature and at significantly lower levels than has been observed in local ULIRGs. Overall, we find that the closest local analogs to our sources, in terms of 3-4um color, HAC-to-silicate and ice-to-silicate ratios, as well as low PAH equivalent widths are sources dominated by deeply obscured nuclei. Such sources form only a small fraction of ULIRGs locally and are commonly believed to be dominated by buried AGN. Our sample suggests that, in absolute number, such buried AGN are at least an order of magnitude more common at z~2 than today. The presence of PAH suggests that significant levels of star-formation are present even if the obscured AGN typically dominate the power budget.Comment: 39 pages, 14 figures, accepted for publication in Ap

    Quantum Information and Entropy

    Get PDF
    Thermodynamic entropy is not an entirely satisfactory measure of information of a quantum state. This entropy for an unknown pure state is zero, although repeated measurements on copies of such a pure state do communicate information. In view of this, we propose a new measure for the informational entropy of a quantum state that includes information in the pure states and the thermodynamic entropy. The origin of information is explained in terms of an interplay between unitary and non-unitary evolution. Such complementarity is also at the basis of the so-called interaction-free measurement.Comment: 21 pages, 3 figure

    A Transactional Analysis of Interaction Free Measurements

    Full text link
    The transactional interpretation of quantum mechanics is applied to the "interaction-free" measurement scenario of Elitzur and Vaidman and to the Quantum Zeno Effect version of the measurement scenario by Kwiat, et al. It is shown that the non-classical information provided by the measurement scheme is supplied by the probing of the intervening object by incomplete offer and confirmation waves that do not form complete transactions or lead to real interactions.Comment: Accepted for publication in Foundations of Physics Letter

    NG7538 IRS1 N: modeling a circumstellar maser disk

    Full text link
    We present an edge-on Keplerian disk model to explain the main component of the 12.2 and 6.7 GHz methanol maser emission detected toward NGC7538-IRS1 N. The brightness distribution and spectrum of the line of bright masers are successfully modeled with high amplification of background radio continuum emission along velocity coherent paths through a maser disk. The bend seen in the position-velocity diagram is a characteristic signature of differentially rotating disks. For a central mass of 30 solar masses, suggested by other observations, our model fixes the masing disk to have inner and outer radii of about 270 AU and 750 AU.Comment: To appear in The Proceedings of the 2004 European Workshop: "Dense Molecular Gas around Protostars and in Galatic Nuclei", Eds. Y. Hagiwara, W.A. Baan, H.J. van Langevelde, 2004, a special issue of ApSS, Kluwe

    1−1=Counterfactual:on the potency and significance of quantum non-events

    Get PDF
    We study the unique role played in quantum mechanics by non-events or ‘counterfactuals’. Our earlier analysis of ‘quantum oblivion’ has revealed some subtle stages in the measurement process, which may end up in self-cancellation. To these findings, we now add two insights derived by two time-symmetric interpretations of quantum mechanics. (i) Like all quantum interactions, the non-event is formed by the conjunction of forward-plus-backward-evolving wave functions. (ii) Then, it is another feature of such dual evolutions, namely the involvement of negative masses and energies, that enables Nature to make some events ‘unhappen’ while leaving causal traces

    Quantum Mechanics helps in searching for a needle in a haystack

    Get PDF
    Quantum mechanics can speed up a range of search applications over unsorted data. For example imagine a phone directory containing N names arranged in completely random order. To find someone's phone number with a probability of 50%, any classical algorithm (whether deterministic or probabilistic) will need to access the database a minimum of O(N) times. Quantum mechanical systems can be in a superposition of states and simultaneously examine multiple names. By properly adjusting the phases of various operations, successful computations reinforce each other while others interfere randomly. As a result, the desired phone number can be obtained in only O(sqrt(N)) accesses to the database.Comment: Postscript, 4 pages. This is a modified version of the STOC paper (quant-ph/9605043) and is modified to make it more comprehensible to physicists. It appeared in Phys. Rev. Letters on July 14, 1997. (This paper was originally put out on quant-ph on June 13, 1997, the present version has some minor typographical changes
    corecore