415 research outputs found
Magnetic fluctuations and superconductivity in Fe pnictides probed by electron spin resonance
The electron spin resonance absorption spectrum of Eu^{2+} ions serves as a
probe of the normal and superconducting state in Eu_{0.5}K_{0.5}Fe_2As_2. The
spin-lattice relaxation rate 1/T_1^{\rm ESR} obtained from the ESR linewidth
exhibits a Korringa-like linear increase with temperature above T_C evidencing
a normal Fermi-liquid behavior. Below 45 K deviations from the Korringa-law
occur which are ascribed to enhanced magnetic fluctuations within the FeAs
layers upon approaching the superconducting transition. Below T_C the
spin-lattice relaxation rate 1/T_1^{\rm ESR} follows a T^{1.5}-behavior without
the appearance of a coherence peak.Comment: 5 pages, 5 figure
Shielding efficiency and E(J) characteristics measured on large melt cast Bi-2212 hollow cylinders in axial magnetic fields
We show that tubes of melt cast Bi-2212 used as current leads for LTS magnets
can also act as efficient magnetic shields. The magnetic screening properties
under an axial DC magnetic field are characterized at several temperatures
below the liquid nitrogen temperature (77 K). Two main shielding properties are
studied and compared with those of Bi-2223, a material that has been considered
in the past for bulk magnetic shields. The first property is related to the
maximum magnetic flux density that can be screened, Blim; it is defined as the
applied magnetic flux density below which the field attenuation measured at the
centre of the shield exceeds 1000. For a cylinder of Bi-2212 with a wall
thickness of 5 mm and a large ratio of length over radius, Blim is evaluated to
1 T at T = 10 K. This value largely exceeds the Blim value measured at the same
temperature on similar tubes of Bi-2223. The second shielding property that is
characterized is the dependence of Blim with respect to variations of the sweep
rate of the applied field, dBapp/dt. This dependence is interpreted in terms of
the power law E = Ec(J/Jc)^n and allows us to determine the exponent n of this
E(J) characteristics for Bi-2212. The characterization of the magnetic field
relaxation involves very small values of the electric field. This gives us the
opportunity to experimentally determine the E(J) law in an unexplored region of
small electric fields. Combining these results with transport and AC shielding
measurements, we construct a piecewise E(J) law that spans over 8 orders of
magnitude of the electric field.Comment: 16 pages, 7 figure
A Machine Learning-Based Raman Spectroscopic Assay for the Identification of Burkholderia mallei and Related Species
Burkholderia (B.) mallei, the causative agent of glanders, and B. pseudomallei, the causative agent of melioidosis in humans and animals, are genetically closely related. The high infectious potential of both organisms, their serological cross-reactivity, and similar clinical symptoms in human and animals make the differentiation from each other and other Burkholderia species challenging. The increased resistance against many antibiotics implies the need for fast and robust identification methods. The use of Raman microspectroscopy in microbial diagnostic has the potential for rapid and reliable identification. Single bacterial cells are directly probed and a broad range of phenotypic information is recorded, which is subsequently analyzed by machine learning methods. Burkholderia were handled under biosafety level 1 (BSL 1) conditions after heat inactivation. The clusters of the spectral phenotypes and the diagnostic relevance of the Burkholderia spp. were considered for an advanced hierarchical machine learning approach. The strain panel for training involved 12 B. mallei, 13 B. pseudomallei and 11 other Burkholderia spp. type strains. The combination of top- and sub-level classifier identified the mallei-complex with high sensitivities (>95%). The reliable identification of unknown B. mallei and B. pseudomallei strains highlighted the robustness of the machine learning-based Raman spectroscopic assay
Identification, Genotyping and Antimicrobial Susceptibility Testing of Brucella spp. Isolated from Livestock in Egypt
Brucellosis is a highly contagious zoonosis worldwide with economic and public health impacts. The aim of the present study was to identify Brucella (B.) spp. isolated from animal populations located in different districts of Egypt and to determine their antimicrobial resistance. In total, 34-suspected Brucella isolates were recovered from lymph nodes, milk, and fetal abomasal contents of infected cattle, buffaloes, sheep, and goats from nine districts in Egypt. The isolates were identified by microbiological methods and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Differentiation and genotyping were confirmed using multiplex PCR for B. abortus, Brucella melitensis, Brucella ovis, and Brucella suis (AMOS) and Bruce-ladder PCR. Antimicrobial susceptibility testing against clinically used antimicrobial agents (chloramphenicol, ciprofloxacin, erythromycin, gentamicin, imipenem, rifampicin, streptomycin, and tetracycline) was performed using E-Test. The antimicrobial resistance-associated genes and mutations in Brucella isolates were confirmed using molecular tools. In total, 29 Brucella isolates (eight B. abortus biovar 1 and 21 B. melitensis biovar 3) were identified and typed. The resistance of B. melitensis to ciprofloxacin, erythromycin, imipenem, rifampicin, and streptomycin were 76.2%, 19.0%, 76.2%, 66.7%, and 4.8%, respectively. Whereas, 25.0%, 87.5%, 25.0%, and 37.5% of B. abortus were resistant to ciprofloxacin, erythromycin, imipenem, and rifampicin, respectively. Mutations in the rpoB gene associated with rifampicin resistance were identified in all phenotypically resistant isolates. Mutations in gyrA and gyrB genes associated with ciprofloxacin resistance were identified in four phenotypically resistant isolates of B. melitensis. This is the first study highlighting the antimicrobial resistance in Brucella isolated from different animal species in Egypt. Mutations detected in genes associated with antimicrobial resistance unravel the molecular mechanisms of resistance in Brucella isolates from Egypt. The mutations in the rpoB gene in phenotypically resistant B. abortus isolates in this study were reported for the first time in Egypt
Inverse Scattering for Gratings and Wave Guides
We consider the problem of unique identification of dielectric coefficients
for gratings and sound speeds for wave guides from scattering data. We prove
that the "propagating modes" given for all frequencies uniquely determine these
coefficients. The gratings may contain conductors as well as dielectrics and
the boundaries of the conductors are also determined by the propagating modes.Comment: 12 page
Heavy-Fermion Formation at the Metal-to-Insulator Transition in GdSrTiO
The perovskite-like transition-metal oxide GdSrTiO is
investigated by measurements of resistivity, specific-heat, and electron
paramagnetic resonance (EPR). Approaching the metal-to-insulator transition
from the metallic regime (), the Sommerfeld coefficient of
the specific heat becomes strongly enhanced and the resistivity increases
quadratically at low temperatures, which both are fingerprints of strong
electronic correlations. The temperature dependence of the dynamic
susceptibility, as determined from the Gd-EPR linewidth, signals the
importance of strong spin fluctuations, as observed in heavy-fermion compounds.Comment: 4pages, 3 figure
Quasi-degenerate self-trapping in one-dimensional charge transfer exciton
The self-trapping by the nondiagonal particle-phonon interaction between two
quasi-degenerate energy levels of excitonic system, is studied. We propose this
is realized in charge transfer exciton, where the directions of the
polarization give the quasi-degeneracy. It is shown that this mechanism, unlike
the conventional diagonal one, allows a coexistence and resonance of the free
and self-trapped states even in one-dimensional systems and a quantitative
theory for the optical properties (light absorption and time-resolved
luminescence) of the resonating states is presented. This theory gives a
consistent resolution for the long-standing puzzles in quasi-one-dimensional
compound A-PMDA.Comment: accepted to Phys. Rev. Letter
Inhomogeneity of the intrinsic magnetic field in superconducting YBa2Cu3OX compounds as revealed by rare-earth EPR-probe
X-band electron paramagnetic resonance on doped Er3+ and Yb3+ ions in
Y0.99(Yb,Er)0.01Ba2Cu3OX compounds with different oxygen contents in the wide
temperature range (4-120)K have been made. In the superconducting species, the
strong dependencies of the linewidth and resonance line position from the sweep
direction of the applied magnetic field are revealed at the temperatures
significantly below TC. The possible origins of the observed hysteresis are
analyzed. Applicability of the presented EPR approach to extract information
about the dynamics of the flux-line lattice and critical state parameters
(critical current density, magnetic penetration depth, and characteristic
spatial scale of the inhomogeneity) is discussedComment: 17 pages, 5 Figures. Renewed versio
Radiating and non-radiating sources in elasticity
In this work, we study the inverse source problem of a fixed frequency for
the Navier's equation. We investigate that nonradiating external forces. If the
support of such a force has a convex or non-convex corner or edge on their
boundary, the force must be vanishing there. The vanishing property at corners
and edges holds also for sufficiently smooth transmission eigenfunctions in
elasticity. The idea originates from the enclosure method: The energy identity
and new type exponential solutions for the Navier's equation.Comment: 17 page
- …
