2,317 research outputs found
Increased mortality in schizophrenia due to cardiovascular disease - a non-systematic review of epidemiology, possible causes and interventions
Background: Schizophrenia is among the major causes of disability worldwide and the mortality from cardiovascular disease (CVD) is significantly elevated. There is a growing concern that this health challenge is not fully understood and efficiently addressed.
Methods: Non-systematic review using searches in PubMed on relevant topics as well as selection of references based on the authors’ experience from clinical work and research in the field.
Results: In most countries, the standardized mortality rate in schizophrenia is about 2.5, leading to a reduction in life expectancy between 15 and 20 years. A major contributor of the increased mortality is due to CVD, with CVD mortality ranging from 40 to 50% in most studies. Important causal factors are related to lifestyle, including poor diet, lack of physical activity, smoking, and substance abuse. Recent findings suggest that there are overlapping pathophysiology and genetics between schizophrenia and CVD-risk factors, further increasing the liability to CVD in schizophrenia. Many pharmacological agents used for treating psychotic disorders have side effects augmenting CVD risk. Although several CVD-risk factors can be effectively prevented and treated, the provision of somatic health services to people with schizophrenia seems inadequate. Further, there is a sparseness of studies investigating the effects of lifestyle interventions in schizophrenia, and there is little knowledge about effective programs targeting physical health in this population.
Discussion: The risk for CVD and CVD-related deaths in people with schizophrenia is increased, but the underlying mechanisms are not fully known. Coordinated interventions in different health care settings could probably reduce the risk. There is an urgent need to develop and implement effective programs to increase life expectancy in schizophrenia, and we argue that mental health workers should be more involved in this important task
CRANKITE: a fast polypeptide backbone conformation sampler
Background: CRANKITE is a suite of programs for simulating backbone conformations of polypeptides and proteins. The core of the suite is an efficient Metropolis Monte Carlo sampler of backbone conformations in continuous three-dimensional space in atomic details.
Methods: In contrast to other programs relying on local Metropolis moves in the space of dihedral angles, our sampler utilizes local crankshaft rotations of rigid peptide bonds in Cartesian space.
Results: The sampler allows fast simulation and analysis of secondary structure formation and conformational changes for proteins of average length
A proximal femoral implant preserves physiological bone deformation: a biomechanical investigation in cadaveric bones
The aim of this study was to compare the perturbances in bone deformation patterns of the proximal femur due to a conventional cemented femoral stem and a novel uncemented implant designed on the principles of osseointegration. Five matched pairs of fresh frozen human femora were mechanically tested. Bone deformation patterns, measured with a video digitizing system under 1.5 kN joint force, showed that the cemented Spectron femoral implant caused significant alterations to the proximal femoral deformation pattern, whereas the Gothenburg osseointegrated titanium femoral implant did not significantly alter the bone behaviour (p < 0.05). Vertical micromotions measured under 1 kN after 1000 cycles were within the threshold of movement tolerable for bone ingrowth (21 microm for the Gothenburg system and 26 microm for the cemented implant).Published versio
Пленум Наукової ради«Українська мова» Українська лексикографія та лексикологія: проблеми, завдання
10–11 листопада 2011року у Ніжинському державному університеты імені Миколи Гоголя відбувся Пленум Наукової ради “Українська мова” Інституту української мови НАН України на тему “Українська лексикографія та лексикологія: проблеми, завдання”
Theoretical analysis of the role of chromatin interactions in long-range action of enhancers and insulators
Long-distance regulatory interactions between enhancers and their target
genes are commonplace in higher eukaryotes. Interposed boundaries or insulators
are able to block these long distance regulatory interactions. The mechanistic
basis for insulator activity and how it relates to enhancer
action-at-a-distance remains unclear. Here we explore the idea that topological
loops could simultaneously account for regulatory interactions of distal
enhancers and the insulating activity of boundary elements. We show that while
loop formation is not in itself sufficient to explain action at a distance,
incorporating transient non-specific and moderate attractive interactions
between the chromatin fibers strongly enhances long-distance regulatory
interactions and is sufficient to generate a euchromatin-like state. Under
these same conditions, the subdivision of the loop into two topologically
independent loops by insulators inhibits inter-domain interactions. The
underlying cause of this effect is a suppression of crossings in the contact
map at intermediate distances. Thus our model simultaneously accounts for
regulatory interactions at a distance and the insulator activity of boundary
elements. This unified model of the regulatory roles of chromatin loops makes
several testable predictions that could be confronted with \emph{in vitro}
experiments, as well as genomic chromatin conformation capture and fluorescent
microscopic approaches.Comment: 10 pages, originally submitted to an (undisclosed) journal in May
201
Metagenome sequencing of the microbial community of a solar saltern crystallizer pond at cáhuil lagoon, chile.
Cáhuil Lagoon in central Chile harbors distinct microbial communities in various solar salterns that are arranged as interconnected ponds with increasing salt concentrations. Here, we report the metagenome of the 3.0- to 0.2-µm fraction of the microbial community present in a crystallizer pond with 34% salinity
Structural and functional characterization of Pseudomonas aeruginosa CupB chaperones
Pseudomonas aeruginosa, an important human pathogen, is estimated to be responsible for,10% of nosocomial infections worldwide. The pathogenesis of P. aeruginosa starts from its colonization in the damaged tissue or medical devices (e. g. catheters, prothesis and implanted heart valve etc.) facilitated by several extracellular adhesive factors including fimbrial pili. Several clusters containing fimbrial genes have been previously identified on the P. aeruginosa chromosome and named cup [1]. The assembly of the CupB pili is thought to be coordinated by two chaperones, CupB2 and CupB4. However, due to the lack of structural and biochemical data, their chaperone activities remain speculative. In this study, we report the 2.5 A crystal structure of P. aeruginosa CupB2. Based on the structure, we further tested the binding specificity of CupB2 and CupB4 towards CupB1 (the presumed major pilus subunit) and CupB6 (the putative adhesin) using limited trypsin digestion and strep-tactin pull-down assay. The structural and biochemical data suggest that CupB2 and CupB4 might play different, but not redundant, roles in CupB secretion. CupB2 is likely to be the chaperone of CupB1, and CupB4 could be the chaperone of CupB4:CupB5:CupB6, in which the interaction of CupB4 and CupB6 might be mediated via CupB5
A Measurement of the Ds+ Lifetime
A high statistics measurement of the Ds+ lifetime from the Fermilab
fixed-target FOCUS photoproduction experiment is presented. We describe the
analysis of the two decay modes, Ds+ -> phi(1020)pi+ and Ds+ ->
\bar{K}*(892)0K+, used for the measurement. The measured lifetime is 507.4 +/-
5.5 (stat.) +/- 5.1 (syst.) fs using 8961 +/- 105 Ds+ -> phi(1020)pi+ and 4680
+/- 90 Ds+ -> \bar{K}*(892)0K+ decays. This is a significant improvement over
the present world average.Comment: 5 pages, 3 figures, 2 tables, submitted to PR
New FOCUS results on charm mixing and CP violation
We present a summary of recent results on CP violation and mixing in the
charm quark sector based on a high statistics sample collected by
photoproduction experiment FOCUS (E831 at Fermilab). We have measured the
difference in lifetimes for the decays: and . This translates into a measurement of the mixing parameter in
the \d0d0 system, under the assumptions that is an equal mixture of
CP odd and CP even eigenstates, and CP violation is negligible in the neutral
charm meson system. We verified the latter assumption by searching for a CP
violating asymmetry in the Cabibbo suppressed decay modes , and . We show preliminary
results on a measurement of the branching ratio .Comment: 9 pages, 6 figures, requires espcrc2.sty. Presented by S.Bianco at
CPConf2000, September 2000, Ferrara (Italy). In this revision, fixed several
stylistic flaws, add two significant references, fixed a typo in Tab.
Search for CP Violation in the decays D+ -> K_S pi+ and D+ -> K_S K+
A high statistics sample of photo-produced charm from the FOCUS(E831)
experiment at Fermilab has been used to search for direct CP violation in the
decays D+->K_S pi+ and D+ -> K_S K+. We have measured the following asymmetry
parameters relative to D+->K-pi+pi+: A_CP(K_S pi+) = (-1.6 +/- 1.5 +/- 0.9)%,
A_CP(K_S K+) = (+6.9 +/- 6.0 +/- 1.5)% and A_CP(K_S K+) = (+7.1 +/- 6.1 +/-
1.2)% relative to D+->K_S pi+. The first errors quoted are statistical and the
second are systematic. We also measure the relative branching ratios:
\Gamma(D+->\bar{K0}pi+)/\Gamma(D+->K-pi+pi+) = (30.60 +/- 0.46 +/- 0.32)%,
\Gamma(D+->\bar{K0}K+)/\Gamma(D+->K-pi+pi+) = (6.04 +/- 0.35 +/- 0.30)% and
\Gamma(D+->\bar{K0}K+)/\Gamma(D+->\bar{K0}pi+) = (19.96 +/- 1.19 +/- 0.96)%.Comment: 4 pages, 3 figure
- …
