5,579 research outputs found

    Isospin breaking in pion-nucleon scattering at threshold by radiative processes

    Full text link
    We investigate the dispersive contribution by radiative processes such as (pi- proton to neutron gamma) and (pi- proton to Delta gamma) to the pion-nucleon scattering lengths of charged pions in the heavy baryon limit. They give a large isospin violating contribution in the corresponding isoscalar scattering length, but only a small violation in the isovector one. These terms contribute 6.3(3)% to the 1s level shift of pionic hydrogen and give a chiral constant F_pi^2f_1=-25.8(8) MeV.Comment: 9 pages with 1 figur

    Precision determination of the pi-N scattering lengths and the charged pi-NN coupling constant

    Get PDF
    We critically evaluate the isovector GMO sumrule for the charged πNN\pi N N coupling constant using recent precision data from π\pi ^-p and π\pi^-d atoms and with careful attention to systematic errors. From the π\pi ^-d scattering length we deduce the pion-proton scattering lengths 1/2(aπp+aπn)=(20±6{1/2}(a_{\pi ^-p}+a_{\pi ^-n})=(-20\pm 6(statistic)±10 \pm 10 (systematic))~104mπc1\cdot 10^{-4}m_{\pi_c}^{-1} and 1/2(aπpaπn)=(903±14)104mπc1{1/2}(a_{\pi ^-p}-a_{\pi ^-n})=(903 \pm 14)\cdot 10^{-4}m_{\pi_c}^{-1}. From this a direct evaluation gives gc2(GMO)/4π=14.20±0.07g^2_c(GMO)/4\pi =14.20\pm 0.07(statistic)±0.13\pm 0.13(systematic) or fc2/4π=0.0786±0.0008f^2_c/4\pi= 0.0786\pm 0.0008.Comment: 4 pages, 1 figure, latex and postscript; invited talk at PANIC99; to appear in Nucl. Phys. A; changed notation: g^2 and f^2 replaced by conventional g^2/4\pi and f^2/4\p

    Impulse approximation in the n p --> d pi^0 reaction reexamined

    Full text link
    The impulse approximation (one-body operator) in the n p --> d pi^0 reaction is reexamined with emphasis on the issues of reducibility and recoil corrections. An inconsistency when one pion exchange is included in the production operator is demonstrated and then resolved via the introduction of "wave function corrections" which nearly vanish for static nucleon propagators. Inclusion of the recoil corrections to the nucleon propagators is found to change the magnitude and sign of the impulse production amplitude, worsening agreement with the experimental cross section by approximately 30%. A cutoff is used to account for the phenomenological nature of the external wave functions, and is found to have a significant impact up to approximately 2.5 GeV.Comment: Published versio

    Variance of the decay intensity of superdeformed bands

    Get PDF
    We present analytic formulae for the energy average and variance of the intraband decay intensity of a superdeformed band.Comment: 4 pages, 2 figures, presented at the VIII International Conference on Nucleus-Nucleus Collisions in Moscow (Russia) on June 17-21, 200

    Exotic baryons from a heavy meson and a nucleon - Positive parity states -

    Full text link
    We study heavy baryons with exotic flavor quantum numbers formed by a heavy meson and a nucleon (DbarN and BN) with positive parity. One pion exchange interaction, providing a tensor force, dominates as a long range force to bind the DbarN and BN ystems. In the heavy quark mass limit, pseudoscalar meson and vector meson are degenerate and the binding mechanism by the tensor force analogous to that in the nuclear systems becomes important. As a result, we obtain the DbarN and BN resonant states in the J^P=1/2^+, 3/2^+ and 5/2^+ channels with I=0

    Statistical theory of the many-body nuclear system

    Get PDF
    A recently proposed statistical theory of the mean fields associated with the ground and excited collective states of a generic many-body system is extended by increasing the dimensions of the P-space. In applying the new framework to nuclear matter, in addition to the mean field energies we obtain their fluctuations as well, together with the ones of the wavefunctions, in first order of the expansion in the complexity of the Q-space states. The physics described by the latter is assumed to be random. To extract numerical predictions out of our scheme we develop a schematic version of the approach, which, while much simplified, yields results of significance on the size of the error affecting the mean fields, on the magnitude of the residual effective interaction, on the ground state spectroscopic factor and on the mixing occurring between the vectors spanning the P-space.Comment: 27 pages, 3 figures; Dedicated to the memory of Herman Feshbac

    Chiral Dynamics of Deeply Bound Pionic Atoms

    Get PDF
    We present and discuss a systematic calculation, based on two-loop chiral perturbation theory, of the pion-nuclear s-wave optical potential. A proper treatment of the explicit energy dependence of the off-shell pion self-energy together with (electromagnetic) gauge invariance of the Klein-Gordon equation turns out to be crucial. Accurate data for the binding energies and widths of the 1s and 2p levels in pionic ^{205}Pb and ^{207}Pb are well reproduced, and the notorious "missing repulsion" in the pion-nuclear s-wave optical potential is accounted for. The connection with the in-medium change of the pion decay constant is clarified.Comment: preprint ECT*-02-16, 4 pages, 3 figure

    Quark Condensate in the Deuteron

    Get PDF
    We study the changes produced by the deuteron on the QCD quark condensate by means the Feynman-Hellmann theorem and find that the pion mass dependence of the pion-nucleon coupling could play an important role. We also discuss the relation between the many body effect of the condensate and the meson exchange currents, as seen by photons and pions. For pion probes, the many-body term in the physical amplitude differs significantly from that of soft pions, the one linked to the condensate. Thus no information about the many-body term of the condensate can be extracted from the pion-deuteron scattering length. On the other hand, in the Compton amplitude, the relationship with the condensate is a more direct one.Comment: to appear in Physics Review C (19 pages, 3 figures

    Hyperon production in near threshold nucleon-nucleon collisions

    Full text link
    We study the mechanism of the associated Lambda-kaon and Sigma-kaon production in nucleon-nucleon collisions over an extended range of near threshold beam energies within an effective Lagrangian model, to understand of the new data on pp --> p Lambda K+ and pp --> p Sigma0 K+ reactions published recently by the COSY-11 collaboration. In this theory, the hyperon production proceeds via the excitation of N*(1650), N*(1710), and N*(1720) baryonic resonances. Interplay of the relative contributions of various resonances to the cross sections, is discussed as a function of the beam energy over a larger near threshold energy domain. Predictions of our model are given for the total cross sections of pp --> p Sigma+K0, pp --> n Sigma+K+, and pn --> n Lambda K+ reactions.Comment: 16 pages, 4 figures, one new table added and dicussions are updated, version accepted for publication by Physical Review

    Isospin breaking of the narrow charmonium state of Belle at 3872 MeV as a deuson

    Full text link
    The narrow charmonium state near 3872 MeV reported by the Belle collaboration and confirmedby CDF lies almost exactly at the neutral D anti-D* threshold. As was predicted many years ago it can be a deuteronlike meson-meson state called a deuson. If so, it should be an axial, or possibily a pseudoscalar state with C=0, and isospin predominantly 0. Large isospin breaking is expected because of the isospin mass splitting between the neutral and charged D (D*) mesons. Because of this large isospin breaking the decay X(3872) to J/psi rho would be allowed, while J/psi sigma would be forbidden by C-parity, as indicated by the present data.Comment: 7 latex pages 5 figures. This report supercedes the unpublished reminder hep-ph/0308277. Version 2 to appear in Physics Letters B, one reference added and minor improvement
    corecore