605 research outputs found

    Boundary K-Matrices for the Six Vertex and the n(2n-1) A_{n-1} Vertex Models

    Full text link
    Boundary conditions compatible with integrability are obtained for two dimensional models by solving the factorizability equations for the reflection matrices K±(θ)K^{\pm}(\theta). For the six vertex model the general solution depending on four arbitrary parameters is found. For the An1A_{n-1} models all diagonal solutions are found. The associated integrable magnetic Hamiltonians are explicitly derived.Comment: 9 pages,latex, LPTHE-PAR 92-4

    A review of the decoherent histories approach to the arrival time problem in quantum theory

    Full text link
    We review recent progress in understanding the arrival time problem in quantum mechanics, from the point of view of the decoherent histories approach to quantum theory. We begin by discussing the arrival time problem, focussing in particular on the role of the probability current in the expected classical solution. After a brief introduction to decoherent histories we review the use of complex potentials in the construction of appropriate class operators. We then discuss the arrival time problem for a particle coupled to an environment, and review how the arrival time probability can be expressed in terms of a POVM in this case. We turn finally to the question of decoherence of the corresponding histories, and we show that this can be achieved for simple states in the case of a free particle, and for general states for a particle coupled to an environment.Comment: 10 pages. To appear in DICE 2010 conference proceeding

    The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition

    Full text link
    We analytically derive the spectrum of gravitational waves due to magneto-hydrodynamical turbulence generated by bubble collisions in a first-order phase transition. In contrast to previous studies, we take into account the fact that turbulence and magnetic fields act as sources of gravitational waves for many Hubble times after the phase transition is completed. This modifies the gravitational wave spectrum at large scales. We also model the initial stirring phase preceding the Kolmogorov cascade, while earlier works assume that the Kolmogorov spectrum sets in instantaneously. The continuity in time of the source is relevant for a correct determination of the peak position of the gravitational wave spectrum. We discuss how the results depend on assumptions about the unequal-time correlation of the source and motivate a realistic choice for it. Our treatment gives a similar peak frequency as previous analyses but the amplitude of the signal is reduced due to the use of a more realistic power spectrum for the magneto-hydrodynamical turbulence. For a strongly first-order electroweak phase transition, the signal is observable with the space interferometer LISA.Comment: 46 pages, 17 figures. Replaced with revised version accepted for publication in JCA

    Annihilation contribution and Ba0π,f0KB\to a_0 \pi, f_0 K decays

    Full text link
    We analyze the decays B0a0±πB^0 \to a^\pm_0 \pi^\mp and B,0f0K,0B^{-,0} \to f_0 K^{-,0} and show that within the factorization approximation a phenomenological consistent picture can be obtained. We show that in this approach the O6O_6 operator provides the dominant contributions to the suppressed channel B0a0+πB^0 \to a^+_0 \pi^-. When the a0a_0 is considered a two quark state, evaluation of the annihilation form factor using Perturbative QCDQCD implies that this contribution is not negligible, and furthermore it can interfere constructively or destructively with other penguin contributions. As a consequence of this ambiguity, the positive identification of B0π+a0B^0 \to \pi^+ a_0^- can not distinguish between the two or four quark assignment of the a0a_0. According to our calculation, a best candidate to distinguish the nature of a0a_0 scalar is Br(Bπ0a0)Br(B^-\to \pi^0a_0^-) since the predictions for a four quark model is one order of magnitude smaller than for the two quark assignment. When the scalars are seen as two quarks states, simple theoretical assumptions based on SU(2) isospin symmetry provide relations between different B decays involving one scalar and one pseudoscalar meson.Comment: 12 pages, 3 figure

    Finite-temperature Screening and the Specific Heat of Doped Graphene Sheets

    Full text link
    At low energies, electrons in doped graphene sheets are described by a massless Dirac fermion Hamiltonian. In this work we present a semi-analytical expression for the dynamical density-density linear-response function of noninteracting massless Dirac fermions (the so-called "Lindhard" function) at finite temperature. This result is crucial to describe finite-temperature screening of interacting massless Dirac fermions within the Random Phase Approximation. In particular, we use it to make quantitative predictions for the specific heat and the compressibility of doped graphene sheets. We find that, at low temperatures, the specific heat has the usual normal-Fermi-liquid linear-in-temperature behavior, with a slope that is solely controlled by the renormalized quasiparticle velocity.Comment: 9 pages, 5 figures, Submitted to J. Phys.

    Polymer quantization of the free scalar field and its classical limit

    Full text link
    Building on prior work, a generally covariant reformulation of free scalar field theory on the flat Lorentzian cylinder is quantized using Loop Quantum Gravity (LQG) type `polymer' representations. This quantization of the {\em continuum} classical theory yields a quantum theory which lives on a discrete spacetime lattice. We explicitly construct a state in the polymer Hilbert space which reproduces the standard Fock vacuum- two point functions for long wavelength modes of the scalar field. Our construction indicates that the continuum classical theory emerges under coarse graining. All our considerations are free of the "triangulation" ambiguities which plague attempts to define quantum dynamics in LQG. Our work constitutes the first complete LQG type quantization of a generally covariant field theory together with a semi-classical analysis of the true degrees of freedom and thus provides a perfect infinite dimensional toy model to study open issues in LQG, particularly those pertaining to the definition of quantum dynamics.Comment: 58 page

    Symmetric coupling of four spin-1/2 systems

    Full text link
    We address the non-binary coupling of identical angular momenta based upon the representation theory for the symmetric group. A correspondence is pointed out between the complete set of commuting operators and the reference-frame-free subsystems. We provide a detailed analysis of the coupling of three and four spin-1/2 systems and discuss a symmetric coupling of four spin-1/2 systems.Comment: 20 pages, no figure

    Antiproton constraints on dark matter annihilations from internal electroweak bremsstrahlung

    Full text link
    If the dark matter particle is a Majorana fermion, annihilations into two fermions and one gauge boson could have, for some choices of the parameters of the model, a non-negligible cross-section. Using a toy model of leptophilic dark matter, we calculate the constraints on the annihilation cross-section into two electrons and one weak gauge boson from the PAMELA measurements of the cosmic antiproton-to-proton flux ratio. Furthermore, we calculate the maximal astrophysical boost factor allowed in the Milky Way under the assumption that the leptophilic dark matter particle is the dominant component of dark matter in our Universe. These constraints constitute very conservative estimates on the boost factor for more realistic models where the dark matter particle also couples to quarks and weak gauge bosons, such as the lightest neutralino which we also analyze for some concrete benchmark points. The limits on the astrophysical boost factors presented here could be used to evaluate the prospects to detect a gamma-ray signal from dark matter annihilations at currently operating IACTs as well as in the projected CTA.Comment: 32 pages; 13 figure

    Detecting matter effects in long baseline experiments

    Full text link
    Experiments strongly suggest that the flavour mixing responsible for the atmospheric neutrino anomaly is very close to being maximal. Thus, it is of great theoretical as well as experimental importance to measure any possible deviation from maximality. In this context, we reexamine the effects of matter interactions in long baseline neutrino oscillation experiments. Contrary to popular belief, the muon neutrino survival probability is shown to be quite sensitive to matter effects. Moreover, for moderately long baselines, the difference between the survival probilities for νμ\nu_\mu and νˉμ\bar\nu_\mu is shown to be large and sensitive to the deviation of Uμ3|U_{\mu 3}| from maximality. Performing a realistic analysis, we demonstrate that a muon-storage ring ν\nu-source alongwith an iron calorimeter detector can measure such deviations. (Contrary to recent claims, this is not so for the NuMI--{\sc minos} experiment.) We also discuss the possible correlation in measuring Uμ3U_{\mu 3} and Ue3U_{e3} in such experiment.Comment: 18 pages, LaTe

    Family Unification, Exotic States and Light Magnetic Monopoles

    Full text link
    Models with fermions in bifundamental representations can lead naturally to family unification as opposed to family replication. Such models typically predict (exotic) color singlet states with fractional electric charge, and magnetic monopoles with multiple Dirac charge. The exotics may be at the TeV scale, and relatively light magnetic monopoles (greater than about 10^7 GeV) can be present in the galaxy with abundance near the Parker bound. We focus on three family SU(4)XSU(3)XSU(3) models.Comment: 37 page
    corecore