929 research outputs found
Ripples in Tapped or Blown Powder
We observe ripples forming on the surface of a granular powder in a container
submitted from below to a series of brief and distinct shocks. After a few
taps, the pattern turns out to be stable against any further shock of the same
amplitude. We find experimentally that the characteristic wavelength of the
pattern is proportional to the amplitude of the shocks. Starting from
consideration involving Darcy's law for air flow through the porous granulate
and avalanche properties, we build up a semi-quantitative model which fits
satisfactorily the set of experimental observations as well as a couple of
additional experiments.Comment: 7 pages, four postscript figures, submitted PRL 11/19/9
Signature of elasticity in the Faraday instability
We investigate the onset of the Faraday instability in a vertically vibrated
wormlike micelle solution. In this strongly viscoelastic fluid, the critical
acceleration and wavenumber are shown to present oscillations as a function of
driving frequency and fluid height. This effect, unseen neither in simple
fluids nor in previous experiments on polymeric fluids, is interpreted in terms
of standing elastic waves between the disturbed surface and the container
bottom. It is shown that the model of S. Kumar [Phys. Rev. E, {\bf 65}, 026305
(2002)] for a viscoelastic fluid accounts qualitatively for our experimental
observations. Explanations for quantitative discrepancies are proposed, such as
the influence of the nonlinear rheological behaviour of this complex fluid.Comment: 4 pages, 4 figure
Critical phenomena: 150 years since Cagniard de la Tour
Critical phenomena were discovered by Cagniard de la Tour in 1822, who died
150 years ago. In order to mark this anniversary, the context and the early
history of his discovery is reviewed. We then follow with a brief sketch of the
history of critical phenomena, indicating the main lines of development until
the present date.
Os fen\'omenos cr\'{\i}ticos foram descobertos pelo Cagniard de la Tour em
Paris em 1822. Para comemorar os 150 anos da sua morte, o contexto e a
hist\'oria initial da sua descoberta \'e contada. Conseguimos com uma
descri\c{c}\~ao breve da hist\'oria dos fen\'emenos cr\'{\i}ticos, indicando as
linhas principais do desenvolvimento at\'e o presente.Comment: Latex2e, 8 pp, 3 eps figures include
Secondary Instabilities of Surface Waves on Viscous Fluids in the Faraday Instability
Secondary instabilities of Faraday waves show three regimes: (1) As seen
previously, low-viscosity (nu) fluids destabilize first into squares. At higher
driving accelerations a, squares show low-frequency modulations corresponding
to the motion of phase defects, while theory predicts a stationary transverse
amplitude modulation (TAM). (2) High-nu fluids destabilize first to stripes.
Stripes then show an oscillatory TAM whose frequency is incommensurate with the
driving frequency. At higher a, the TAM undergoes a phase instability. At still
higher a, edge dislocations form and fluid droplets are ejected. (3)
Intermediate-nu fluids show a complex coexistence of squares and stripes, as
well as stationary and oscillatory TAM instabilities of the stripes.Comment: REVTEX, with 3 separate uuencoded figures, to appear in Europhys.
Let
Heap Formation in Granular Media
Using molecular dynamics (MD) simulations, we find the formation of heaps in
a system of granular particles contained in a box with oscillating bottom and
fixed sidewalls. The simulation includes the effect of static friction, which
is found to be crucial in maintaining a stable heap. We also find another
mechanism for heap formation in systems under constant vertical shear. In both
systems, heaps are formed due to a net downward shear by the sidewalls. We
discuss the origin of net downward shear for the vibration induced heap.Comment: 11 pages, 4 figures available upon request, Plain TeX, HLRZ-101/9
Introduction to Magnetic Monopoles
One of the most basic properties of magnetism is that a magnet always has two
poles, north and south, which cannot be separated into isolated poles, i.e.,
magnetic monopoles. However, there are strong theoretical arguments why
magnetic monopoles should exist. In spite of extensive searches they have not
been found, but they have nevertheless played a central role in our
understanding of physics at the most fundamental level.Comment: 22 pages, 7 figures. To be published in Contemporary Physic
Fingering Instability in Combustion
A thin solid (e.g., paper), burning against an oxidizing wind, develops a
fingering instability with two decoupled length scales. The spacing between
fingers is determined by the P\'eclet number (ratio between advection and
diffusion). The finger width is determined by the degree two dimensionality.
Dense fingers develop by recurrent tip splitting. The effect is observed when
vertical mass transport (due to gravity) is suppressed. The experimental
results quantitatively verify a model based on diffusion limited transport
Time resolved particle dynamics in granular convection
We present an experimental study of the movement of individual particles in a
layer of vertically shaken granular material. High-speed imaging allows us to
investigate the motion of beads within one vibration period. This motion
consists mainly of vertical jumps, and a global ordered drift. The analysis of
the system movement as a whole reveals that the observed bifurcation in the
flight time is not adequately described by the Inelastic Bouncing Ball Model.
Near the bifurcation point, friction plays and important role, and the branches
of the bifurcation do not diverge as the control parameter is increased. We
quantify the friction of the beads against the walls, showing that this
interaction is the underlying mechanism responsible for the dynamics of the
flow observed near the lateral wall
Mechanisms of Dendrites Occurrence during Crystallization: Features of the Ice Crystals Formation
Dendrites formation in the course of crystallization presents very general
phenomenon, which is analyzed in details via the example of ice crystals growth
in deionized water. Neutral molecules of water on the surface are combined into
the double electric layer (DEL) of oriented dipoles; its field reorients
approaching dipoles with observable radio-emission in the range of 150 kHz. The
predominant attraction of oriented dipoles to points of gradients of this field
induces dendrites growth from them, e.g. formation of characteristic form of
snowflakes at free movement of clusters through saturated vapor in atmosphere.
The constant electric field strengthens DELs' field and the growth of
dendrites. Described phenomena should appear at crystallization of various
substances with dipole molecules, features of radio-emission can allow the
monitoring of certain processes in atmosphere and in technological processes.
Crystallization of particles without constant moments can be stimulated by DELs
of another nature with attraction of virtual moments of particles to gradients
of fields and corresponding dendrites formation.Comment: 6 page
Direct Hopf Bifurcation in Parametric Resonance of Hybridized Waves
We study parametric resonance of interacting waves having the same wave
vector and frequency. In addition to the well-known period-doubling instability
we show that under certain conditions the instability is caused by a Hopf
bifurcation leading to quasiperiodic traveling waves. It occurs, for example,
if the group velocities of both waves have different signs and the damping is
weak. The dynamics above the threshold is briefly discussed. Examples
concerning ferromagnetic spin waves and surface waves of ferro fluids are
discussed.Comment: Appears in Phys. Rev. Lett., RevTeX file and three postscript
figures. Packaged using the 'uufiles' utility, 33 k
- …
