929 research outputs found

    Ripples in Tapped or Blown Powder

    Full text link
    We observe ripples forming on the surface of a granular powder in a container submitted from below to a series of brief and distinct shocks. After a few taps, the pattern turns out to be stable against any further shock of the same amplitude. We find experimentally that the characteristic wavelength of the pattern is proportional to the amplitude of the shocks. Starting from consideration involving Darcy's law for air flow through the porous granulate and avalanche properties, we build up a semi-quantitative model which fits satisfactorily the set of experimental observations as well as a couple of additional experiments.Comment: 7 pages, four postscript figures, submitted PRL 11/19/9

    Signature of elasticity in the Faraday instability

    Full text link
    We investigate the onset of the Faraday instability in a vertically vibrated wormlike micelle solution. In this strongly viscoelastic fluid, the critical acceleration and wavenumber are shown to present oscillations as a function of driving frequency and fluid height. This effect, unseen neither in simple fluids nor in previous experiments on polymeric fluids, is interpreted in terms of standing elastic waves between the disturbed surface and the container bottom. It is shown that the model of S. Kumar [Phys. Rev. E, {\bf 65}, 026305 (2002)] for a viscoelastic fluid accounts qualitatively for our experimental observations. Explanations for quantitative discrepancies are proposed, such as the influence of the nonlinear rheological behaviour of this complex fluid.Comment: 4 pages, 4 figure

    Critical phenomena: 150 years since Cagniard de la Tour

    Full text link
    Critical phenomena were discovered by Cagniard de la Tour in 1822, who died 150 years ago. In order to mark this anniversary, the context and the early history of his discovery is reviewed. We then follow with a brief sketch of the history of critical phenomena, indicating the main lines of development until the present date. Os fen\'omenos cr\'{\i}ticos foram descobertos pelo Cagniard de la Tour em Paris em 1822. Para comemorar os 150 anos da sua morte, o contexto e a hist\'oria initial da sua descoberta \'e contada. Conseguimos com uma descri\c{c}\~ao breve da hist\'oria dos fen\'emenos cr\'{\i}ticos, indicando as linhas principais do desenvolvimento at\'e o presente.Comment: Latex2e, 8 pp, 3 eps figures include

    Secondary Instabilities of Surface Waves on Viscous Fluids in the Faraday Instability

    Full text link
    Secondary instabilities of Faraday waves show three regimes: (1) As seen previously, low-viscosity (nu) fluids destabilize first into squares. At higher driving accelerations a, squares show low-frequency modulations corresponding to the motion of phase defects, while theory predicts a stationary transverse amplitude modulation (TAM). (2) High-nu fluids destabilize first to stripes. Stripes then show an oscillatory TAM whose frequency is incommensurate with the driving frequency. At higher a, the TAM undergoes a phase instability. At still higher a, edge dislocations form and fluid droplets are ejected. (3) Intermediate-nu fluids show a complex coexistence of squares and stripes, as well as stationary and oscillatory TAM instabilities of the stripes.Comment: REVTEX, with 3 separate uuencoded figures, to appear in Europhys. Let

    Heap Formation in Granular Media

    Full text link
    Using molecular dynamics (MD) simulations, we find the formation of heaps in a system of granular particles contained in a box with oscillating bottom and fixed sidewalls. The simulation includes the effect of static friction, which is found to be crucial in maintaining a stable heap. We also find another mechanism for heap formation in systems under constant vertical shear. In both systems, heaps are formed due to a net downward shear by the sidewalls. We discuss the origin of net downward shear for the vibration induced heap.Comment: 11 pages, 4 figures available upon request, Plain TeX, HLRZ-101/9

    Introduction to Magnetic Monopoles

    Full text link
    One of the most basic properties of magnetism is that a magnet always has two poles, north and south, which cannot be separated into isolated poles, i.e., magnetic monopoles. However, there are strong theoretical arguments why magnetic monopoles should exist. In spite of extensive searches they have not been found, but they have nevertheless played a central role in our understanding of physics at the most fundamental level.Comment: 22 pages, 7 figures. To be published in Contemporary Physic

    Fingering Instability in Combustion

    Full text link
    A thin solid (e.g., paper), burning against an oxidizing wind, develops a fingering instability with two decoupled length scales. The spacing between fingers is determined by the P\'eclet number (ratio between advection and diffusion). The finger width is determined by the degree two dimensionality. Dense fingers develop by recurrent tip splitting. The effect is observed when vertical mass transport (due to gravity) is suppressed. The experimental results quantitatively verify a model based on diffusion limited transport

    Time resolved particle dynamics in granular convection

    Full text link
    We present an experimental study of the movement of individual particles in a layer of vertically shaken granular material. High-speed imaging allows us to investigate the motion of beads within one vibration period. This motion consists mainly of vertical jumps, and a global ordered drift. The analysis of the system movement as a whole reveals that the observed bifurcation in the flight time is not adequately described by the Inelastic Bouncing Ball Model. Near the bifurcation point, friction plays and important role, and the branches of the bifurcation do not diverge as the control parameter is increased. We quantify the friction of the beads against the walls, showing that this interaction is the underlying mechanism responsible for the dynamics of the flow observed near the lateral wall

    Mechanisms of Dendrites Occurrence during Crystallization: Features of the Ice Crystals Formation

    Full text link
    Dendrites formation in the course of crystallization presents very general phenomenon, which is analyzed in details via the example of ice crystals growth in deionized water. Neutral molecules of water on the surface are combined into the double electric layer (DEL) of oriented dipoles; its field reorients approaching dipoles with observable radio-emission in the range of 150 kHz. The predominant attraction of oriented dipoles to points of gradients of this field induces dendrites growth from them, e.g. formation of characteristic form of snowflakes at free movement of clusters through saturated vapor in atmosphere. The constant electric field strengthens DELs' field and the growth of dendrites. Described phenomena should appear at crystallization of various substances with dipole molecules, features of radio-emission can allow the monitoring of certain processes in atmosphere and in technological processes. Crystallization of particles without constant moments can be stimulated by DELs of another nature with attraction of virtual moments of particles to gradients of fields and corresponding dendrites formation.Comment: 6 page

    Direct Hopf Bifurcation in Parametric Resonance of Hybridized Waves

    Full text link
    We study parametric resonance of interacting waves having the same wave vector and frequency. In addition to the well-known period-doubling instability we show that under certain conditions the instability is caused by a Hopf bifurcation leading to quasiperiodic traveling waves. It occurs, for example, if the group velocities of both waves have different signs and the damping is weak. The dynamics above the threshold is briefly discussed. Examples concerning ferromagnetic spin waves and surface waves of ferro fluids are discussed.Comment: Appears in Phys. Rev. Lett., RevTeX file and three postscript figures. Packaged using the 'uufiles' utility, 33 k
    corecore