301 research outputs found

    Coastal observatories for monitoring of fish behaviour and their responses to environmental changes

    Get PDF
    The inclusion of behavioral components in the analysis of a community can be of paramount importance in marine ecology. Diel (i.e., 24-h based), seasonal activity rhythms, or longer durational in behavioral responses can result in shifts in populations, and therefore on measurable abundances. Here, we review the value of developing cabled video observatory technology for the remote, long-term, and high-frequency monitoring of fish and their environments in coastal temperate areas. We provide details on the methodological requirements and constraints for the appropriate measurement of fish behavior over various seasonal scales (24 h, seasonal, annual) with camera systems mounted at fixed observatory locations. We highlight the importance of using marine sensors to simultaneously collect relevant environmental data in parallel to image data acquisition. Here we present multiparametric video, oceanographic, and meteorological data collected from the Mediterranean observatory platform, OBSEA (www.​obsea.​es; 20 m water depth). These data are reviewed in relation to ongoing and future developments of cabled observatory science. Two key approaches for the future improvement of cabled observatory technology are: (1) the application of Artificial Intelligence to aid in the analysis of increasingly large, complex, and highly interrelated biological and environmental data sets, and (2) the development of geographical observational networks to enable the reliable spatial analysis of observed populations over extended distances

    Gas seepage and seismogenic structures along the North Anatolian Fault in the eastern Sea of Marmara

    Get PDF
    We carried out a combined geophysical and gas-geochemical survey on an active fault strand along the North Anatolian Fault (NAF) system in the Gulf of İzmit (eastern Sea of Marmara), providing for the first time in this area data on the distribution of methane (CH4) and other gases dissolved in the bottom seawater, as well as the CH4isotopic composition. Based on high-resolution morphobathymetric data and chirp-sonar seismic reflection profiles we selected three areas with different tectonic features associated to the NAF system, where we performed visual and instrumental seafloor inspections, including in situ measurements of dissolved CH4, and sampling of the bottom water. Starting from background values of 2–10 nM, methane concentration in the bottom seawater increases abruptly up to 20 nM over the main NAF trace. CH4 concentration peaks up to ∼120 nM were detected above mounds related probably to gas and fluids expulsion. Methane is microbial (δ13CCH4: −67.3 and −76‰ versus VPDB), and was found mainly associated with pre-Holocene deposits topped by a 10–20 m thick draping of marine mud. The correlation between tectonic structures and gas-seepages at the seafloor suggests that the NAF in the Gulf of İzmit could represent a key site for long-term combined monitoring of fluid exhalations and seismicity to assess their potential as earthquake precursors

    Gas and seismicity within the Istanbul seismic gap

    Get PDF
    Understanding micro-seismicity is a critical question for earthquake hazard assessment. Since the devastating earthquakes of Izmit and Duzce in 1999, the seismicity along the submerged section of North Anatolian Fault within the Sea of Marmara (comprising the “Istanbul seismic gap”) has been extensively studied in order to infer its mechanical behaviour (creeping vs locked). So far, the seismicity has been interpreted only in terms of being tectonic-driven, although the Main Marmara Fault (MMF) is known to strike across multiple hydrocarbon gas sources. Here, we show that a large number of the aftershocks that followed the M 5.1 earthquake of July, 25th 2011 in the western Sea of Marmara, occurred within a zone of gas overpressuring in the 1.5–5 km depth range, from where pressurized gas is expected to migrate along the MMF, up to the surface sediment layers. Hence, gas-related processes should also be considered for a complete interpretation of the micro-seismicity (~M < 3) within the Istanbul offshore domain
    corecore