799 research outputs found
Discrete single-photon quantum walks with tunable decoherence
Quantum walks have a host of applications, ranging from quantum computing to
the simulation of biological systems. We present an intrinsically stable,
deterministic implementation of discrete quantum walks with single photons in
space. The number of optical elements required scales linearly with the number
of steps. We measure walks with up to 6 steps and explore the
quantum-to-classical transition by introducing tunable decoherence. Finally, we
also investigate the effect of absorbing boundaries and show that decoherence
significantly affects the probability of absorption.Comment: Published version, 5 pages, 4 figure
Hardy's paradox and violation of a state-independent Bell inequality in time
Tests such as Bell's inequality and Hardy's paradox show that joint
probabilities and correlations between distant particles in quantum mechanics
are inconsistent with local realistic theories. Here we experimentally
demonstrate these concepts in the time domain, using a photonic entangling gate
to perform nondestructive measurements on a single photon at different times.
We show that Hardy's paradox is much stronger in time and demonstrate the
violation of a temporal Bell inequality independent of the quantum state,
including for fully mixed states.Comment: Published Version, 4 pages, 3 figures. New, more boring titl
A Novel Protocol-Authentication Algorithm Ruling Out a Man-in-the-Middle Attack in Quantum Cryptography
In this work we review the security vulnerability of Quantum Cryptography
with respect to "man-in-the-middle attacks" and the standard authentication
methods applied to counteract these attacks. We further propose a modified
authentication algorithm which features higher efficiency with respect to
consumption of mutual secret bits.Comment: 4 pages, submitted to the International Journal of Quantum
Information, Proceedings of the meeting "Foundations of Quantum Information",
Camerino, April 200
Quantum entanglement distribution with 810 nm photons through telecom fibers
We demonstrate the distribution of polarization entangled photons of
wavelength 810 nm through standard telecom fibers. This technique allows
quantum communication protocols to be performed over established fiber
infrastructure, and makes use of the smaller and better performing setups
available around 800 nm, as compared to those which use telecom wavelengths
around 1550 nm. We examine the excitation and subsequent quenching of
higher-order spatial modes in telecom fibers up to 6 km in length, and perform
a distribution of high quality entanglement (visibility 95.6%). Finally, we
demonstrate quantum key distribution using entangled 810 nm photons over a 4.4
km long installed telecom fiber link.Comment: 5 pages, 5 figures, 1 tabl
Information complementarity in quantum physics
We demonstrate that the concept of information offers a more complete
description of complementarity than the traditional approach based on
observables. We present the first experimental test of information
complementarity for two-qubit pure states, achieving close agreement with
theory; We also explore the distribution of information in a comprehensive
range of mixed states. Our results highlight the strange and subtle properties
of even the simplest quantum systems: for example, entanglement can be
increased by reducing correlations between two subsystems.Comment: 6 pages, 7 figures (including supplementary material
Practical Quantum Key Distribution with Polarization-Entangled Photons
We present an entangled-state quantum cryptography system that operated for
the first time in a real world application scenario. The full key generation
protocol was performed in real time between two distributed embedded hardware
devices, which were connected by 1.45 km of optical fiber, installed for this
experiment in the Vienna sewage system. The generated quantum key was
immediately handed over and used by a secure communication application.Comment: 5 pages, 3 figure
Two-photon quantum walks in an elliptical direct-write waveguide array
Integrated optics provides an ideal test bed for the emulation of quantum
systems via continuous-time quantum walks. Here we study the evolution of
two-photon states in an elliptic array of waveguides. We characterise the
photonic chip via coherent-light tomography and use the results to predict
distinct differences between temporally indistinguishable and distinguishable
two-photon inputs which we then compare with experimental observations. Our
work highlights the feasibility for emulation of coherent quantum phenomena in
three-dimensional waveguide structures.Comment: 8 pages, 7 figure
Tribological Properties of Nanometric Atomic Layer Depositions Applied on AISI 420 Stainless Steel
Atomic Layer Deposition ( ALD ) is a modern technique that Allows to deposit nanometric, conformal coatings on almost any kind of substrates, from plastics to ceramic, metals or even composites. ALD coatings are not dependent on the morphology of the substrate and are only regulated by the composition of the precursors, the chamber temperature and the number of cycles. In this work, mono- and bi -layer nanometric, protective low-temperature ALD Coatings, based on Al2O3 and TiO2 were applied on AISI 420 Stainless Steel in orderto enhance its relatively low corrosion resistance in chloride containing environments. Tribological testing were also performed on the ALD coated AISI 420 in order to evaluate the wear and scratch resistance of these nanometric layers and thus evaluate their durability. Scratch tests were performed using a standard Rockwell C indenter, under a variable load condition, in order to evaluate the critical loading condition for each coating. Wear testing were performed using a stainless steel counterpart, in ball-on-discconfiguration, in order to measure the friction coefficient and wear to confront the resistance. All scratch tests scars and wear tracks were then observed by means of Scanning Electron Microscopy (SEM) in order to understand the wear mechanisms that occurred on the sample surfaces. Corrosion testing, performed under immersion in 0.2 M NaCl solutions, clearly showed that the ALD coatings have a strong effect in protecting the Stainless Steel Substrate against corrosion, reducing the corrosion current density by two orders of magnitude.Tribological The preliminary results showed that ALD depositions obtained at low Temperatures have a brittle behavior caused by the amorphous nature of their structure, and thus undergo delamination phenomena during Scratch Testing at relatively low applied loads. During ball-on-disc testing, the coatings were removed from the substrate, in particular for monolayer ALD configurations, Which seem to have a lower toughness when compared to bi-layer configurations
Experimental test of nonlocal realistic theories without the rotational symmetry assumption
We analyze the class of nonlocal realistic theories that was originally
considered by Leggett [Found. Phys. 33, 1469 (2003)] and tested by us in a
recent experiment [Nature (London) 446, 871 (2007)]. We derive an
incompatibility theorem that works for finite numbers of polarizer settings and
that does not require the previously assumed rotational symmetry of the
two-particle correlation functions. The experimentally measured case involves
seven different measurement settings. Using polarization-entangled photon
pairs, we exclude this broader class of nonlocal realistic models by
experimentally violating a new Leggett-type inequality by 80 standard
deviations.Comment: Published versio
- …
