101 research outputs found
Recommended from our members
Inter-comparison of MARS and FLUKA: Predictions on Energy Deposition in LHC IR Quadrupoles
Detailed modellings of the LHC insertion regions (IR) have earlier been performed to evaluate energy deposition in the IR superconducting magnets [1-4]. Proton-proton collisions at 14 TeV in the centre of mass lead to debris, depositing energy in the IR components. To evaluate uncertainties in those simulations and gain further confidence in the tools and approaches used, inter-comparison calculations have been performed with the latest versions of the FLUKA (2006.3b) [5, 6] and MARS15 [7, 8] Monte Carlo codes. These two codes, used worldwide for multi particle interaction and transport in accelerator, detector and shielding components, have been thoroughly benchmarked by the code authors and the user community (see, for example, recent [9, 10]). In the study described below, a better than 5% agreement was obtained for energy deposition calculated with these two codes - based on different independent physics models - for the identical geometry and initial conditions of a simple model representing the IR5 and its first quadrupole
RNA polymerase II primes Polycomb-repressed developmental genes throughout terminal neuronal differentiation
Polycomb repression in mouse embryonic stem cells (ESCs) is tightly associated with promoter co-occupancy of RNA polymerase II (RNAPII) which is thought to prime genes for activation during early development. However, it is unknown whether RNAPII poising is a general feature of Polycomb repression, or is lost during differentiation. Here, we map the genome-wide occupancy of RNAPII and Polycomb from pluripotent ESCs to non-dividing functional dopaminergic neurons. We find that poised RNAPII complexes are ubiquitously present at Polycomb-repressed genes at all stages of neuronal differentiation. We observe both loss and acquisition of RNAPII and Polycomb at specific groups of genes reflecting their silencing or activation. Strikingly, RNAPII remains poised at transcription factor genes which are silenced in neurons through Polycomb repression, and have major roles in specifying other, non-neuronal lineages. We conclude that RNAPII poising is intrinsically associated with Polycomb repression throughout differentiation. Our work suggests that the tight interplay between RNAPII poising and Polycomb repression not only instructs promoter state transitions, but also may enable promoter plasticity in differentiated cells
Methylation of RNA polymerase II non-consensus Lysine residues marks early transcription in mammalian cells
Dynamic post-translational modification of RNA polymerase II (RNAPII) coordinates the co-transcriptional recruitment of enzymatic complexes that regulate chromatin states and processing of nascent RNA. Extensive phosphorylation of serine residues at the largest RNAPII subunit occurs at its structurally-disordered C-terminal domain (CTD), which is composed of multiple heptapeptide repeats with consensus sequence Y1-S2-P3-T4-S5-P6-S7. Serine-5 and Serine-7 phosphorylation mark transcription initiation, whereas Serine-2 phosphorylation coincides with productive elongation. In vertebrates, the CTD has eight non-canonical substitutions of Serine-7 into Lysine-7, which can be acetylated (K7ac). Here, we describe mono- and di-methylation of CTD Lysine-7 residues (K7me1 and K7me2). K7me1 and K7me2 are observed during the earliest transcription stages and precede or accompany Serine-5 and Serine-7 phosphorylation. In contrast, K7ac is associated with RNAPII elongation, Serine-2 phosphorylation and mRNA expression. We identify an unexpected balance between RNAPII K7 methylation and acetylation at gene promoters, which fine-tunes gene expression levels
Poised Transcription Factories Prime Silent uPA Gene Prior to Activation
The association of poised genes with transcription factories may contribute to rapid transcriptional activation in response to stimuli and to silencing when genes are located at the interior of their chromosome territories
Calibration of a complex activated sludge model for the full-scale wastewater treatment plant
In this study, the results of the calibration of the complex activated sludge model implemented in BioWin software for the full-scale wastewater treatment plant are presented. Within the calibration of the model, sensitivity analysis of its parameters and the fractions of carbonaceous substrate were performed. In the steady-state and dynamic calibrations, a successful agreement between the measured and simulated values of the output variables was achieved. Sensitivity analysis revealed that upon the calculations of normalized sensitivity coefficient (Si,j) 17 (steady-state) or 19 (dynamic conditions) kinetic and stoichiometric parameters are sensitive. Most of them are associated with growth and decay of ordinary heterotrophic organisms and phosphorus accumulating organisms. The rankings of ten most sensitive parameters established on the basis of the calculations of the mean square sensitivity measure (δjmsqr) indicate that irrespective of the fact, whether the steady-state or dynamic calibration was performed, there is an agreement in the sensitivity of parameters
Association between the ACCN1 Gene and Multiple Sclerosis in Central East Sardinia
Multiple genome screens have been performed to identify regions in linkage or association with Multiple Sclerosis (MS, OMIM 126200), but little overlap has been found among them. This may be, in part, due to a low statistical power to detect small genetic effects and to genetic heterogeneity within and among the studied populations. Motivated by these considerations, we studied a very special population, namely that of Niloro, Sardinia, Italy. This is an isolated, old, and genetically homogeneous population with high prevalence of MS. Our study sample includes both nuclear families and unrelated cases and controls. A multi-stage study design was adopted. In the first stage, microsatellites were typed in the 17q11.2 region, previously independently found to be in linkage with MS. One significant association was found at microsatellite D17S798. Next, a bioinformatic screening of the region surrounding this marker highlighted an interesting candidate MS susceptibility gene: the Amiloride-sensitive Cation Channel Neuronal 1 (ACCN1) gene. In the second stage of the study, we resequenced the exons and the 3′ untranslated (UTR) region of ACCN1, and investigated the MS association of Single Nucleotide Polymorphisms (SNPs) identified in that region. For this purpose, we developed a method of analysis where complete, phase-solved, posterior-weighted haplotype assignments are imputed for each study individual from incomplete, multi-locus, genotyping data. The imputed assignments provide an input to a number of proposed procedures for testing association at a microsatellite level or of a sequence of SNPs. These include a Mantel-Haenszel type test based on expected frequencies of pseudocase/pseudocontrol haplotypes, as well as permutation based tests, including a combination of permutation and weighted logistic regression analysis. Application of these methods allowed us to find a significant association between MS and the SNP rs28936 located in the 3′ UTR segment of ACCN1 with p=0.0004 (p=0.002, after adjusting for multiple testing). This result is in tune with several recent experimental findings which suggest that ACCN1 may play an important role in the pathogenesis of MS
Characterization of the Regulatory Region of the Zebrafish Prep1.1 Gene: Analogies to the Promoter of the Human PREP1
Prep1 is a developmentally essential TALE class homeodomain transcription factor. In zebrafish and mouse, Prep1 is already ubiquitously expressed at the earliest stages of development, with important tissue-specific peculiarities. The Prep1 gene in mouse is developmentally essential and has haploinsufficient tumor suppressor activity [1]. We have determined the human Prep1 transcription start site (TSS) by primer extension analysis and identified, within 20 bp, the transcription start region (TSR) of the zebrafish Prep1.1 promoter. The functions of the zebrafish 5′ upstream sequences were analyzed both by transient transfections in Hela Cells and by injection in zebrafish embryos. This analysis revealed a complex promoter with regulatory sequences extending up to −1.8, possibly −5.0 Kb, responsible for tissue specific expression. Moreover, the first intron contains a conserved tissue-specific enhancer both in zebrafish and in human cells. Finally, a two nucleotides mutation of an EGR-1 site, conserved in all species including human and zebrafish and located at a short distance from the TSS, destroyed the promoter activity of the −5.0 Kb promoter. A transgenic fish expressing GFP under the −1.8 Kb zebrafish promoter/enhancer co-expressed GFP and endogenous Prep1.1 during embryonic development. In the adult fish, GFP was expressed in hematopoietic regions like the kidney, in agreement with the essential function of Prep1 in mouse hematopoiesis. Sequence comparison showed conservation from man to fish of the sequences around the TSS, within the first intron enhancer. Moreover, about 40% of the sequences spread throughout the 5 Kbof the zebrafish promoter are concentrated in the −3 to −5 Kb of the human upstream region
Active and poised promoter states drive folding of the extended HoxB locus in mouse embryonic stem cells
Gene expression states influence the three-dimensional conformation of the genome through poorly understood mechanisms. Here, we investigate the conformation of the murine HoxB locus, a gene-dense genomic region containing closely spaced genes with distinct activation states in mouse embryonic stem (ES) cells. To predict possible folding scenarios, we performed computer simulations of polymer models informed with different chromatin occupancy features, which define promoter activation states or CTCF binding sites. Single cell imaging of the locus folding was performed to test model predictions. While CTCF occupancy alone fails to predict the in vivo folding at genomic length scale of 10 kb, we found that homotypic interactions between active and Polycomb-repressed promoters co-occurring in the same DNA fibre fully explain the HoxB folding patterns imaged in single cells. We identify state-dependent promoter interactions as major drivers of chromatin folding in gene-dense regions
Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment
Maternal immune activation (MIA) during pregnancy has been linked to an increased risk of developing psychiatric pathologies in later life. This link may be bridged by a defective microglial phenotype in the offspring induced by MIA, as microglia have key roles in the development and maintenance of neuronal signaling in the central nervous system. The beneficial effects of the immunomodulatory treatment with minocycline on schizophrenic patients are consistent with this hypothesis. Using the MIA mouse model, we found an altered microglial transcriptome and phagocytic function in the adult offspring accompanied by behavioral abnormalities. The changes in microglial phagocytosis on a functional and transcriptional level were similar to those observed in a mouse model of Alzheimer's disease hinting to a related microglial phenotype in neurodegenerative and psychiatric disorders. Minocycline treatment of adult MIA offspring reverted completely the transcriptional, functional and behavioral deficits, highlighting the potential benefits of therapeutic targeting of microglia in psychiatric disorders
Transcription factories in the context of the nuclear and genome organization
In the eukaryotic nucleus, genes are transcribed in transcription factories. In the present review, we re-evaluate the models of transcription factories in the light of recent and older data. Based on this analysis, we propose that transcription factories result from the aggregation of RNA polymerase II-containing pre-initiation complexes assembled next to each other in the nuclear space. Such an aggregation can be triggered by the phosphorylation of the C-terminal domain of RNA polymerase II molecules and their interaction with various transcription factors. Individual transcription factories would thus incorporate tissue-specific, co-regulated as well as housekeeping genes based only on their initial proximity to each other in the nuclear space. Targeting genes to be transcribed to protein-dense factories that contain all factors necessary for transcription initiation and elongation through chromatin templates clearly favors a more economical utilization and better recycling of the transcription machinery
- …
