459 research outputs found

    Exploration of Elastic Scattering Rates for Supersymmetric Dark Matter

    Get PDF
    We explore the possible cross sections for the elastic scattering of neutralinos chi on nucleons p,n in the minimal supersymmetric extension of the standard model (MSSM). Universality of the soft supersymmetry-breaking scalar masses for the Higgs multiplets is not assumed, but the MSSM parameters are nevertheless required to lead consistently to an electroweak vacuum. We explore systematically the region of MSSM parameter space where LEP and other accelerator constraints are respected, and the relic neutralino density lies in the range 0.1 < Omega_chi h^2 < 0.3 preferred by cosmology. We also discuss models with Omega_chi h^2 < 0.1, in which case we scale the density of supersymmetric dark matter in our galactic halo by Omega_chi h^2 / 0.1, allowing for the possible existence of some complementary form of cold dark matter. We find values of the cross sections that are considerably lower than the present experimental sensitivities. At low neutralino masses, m_chi < 100 GeV, the cross sections may be somewhat higher than in the constrained MSSM with universal soft Higgs masses, though they are generally lower. In the case of large m_chi, the cross sections we find may be considerably larger than in the constrained model, but still well below the present experimental sensitivity.Comment: 25 pages LaTeX, 7 eps figure

    Prospects for Detecting Supersymmetric Dark Matter at Post-LEP Benchmark Points

    Get PDF
    A new set of supersymmetric benchmark scenarios has recently been proposed in the context of the constrained MSSM (CMSSM) with universal soft supersymmetry-breaking masses, taking into account the constraints from LEP, bsγb \to s \gamma and gμ2g_\mu - 2. These points have previously been used to discuss the physics reaches of different accelerators. In this paper, we discuss the prospects for discovering supersymmetric dark matter in these scenarios. We consider direct detection through spin-independent and spin-dependent nuclear scattering, as well as indirect detection through relic annihilations to neutrinos, photons, and positrons. We find that several of the benchmark scenarios offer good prospects for direct detection via spin-independent nuclear scattering and indirect detection via muons produced by neutrinos from relic annihilations inside the Sun, and some models offer good prospects for detecting photons from relic annihilations in the galactic centre.Comment: 24 pages, 14 figure

    Supersymmetric Dark Matter Detection at Post-LEP Benchmark Points

    Get PDF
    We review the prospects for discovering supersymmetric dark matter in a recently proposed set of post-LEP supersymmetric benchmark scenarios. We consider direct detection through spin-independent nuclear scattering, as well as indirect detection through relic annihilations to neutrinos, photons, and positrons. We find that several of the benchmark scenarios offer good prospects for direct detection through spin-independent nuclear scattering, as well as indirect detection through muons produced by neutrinos from relic annihilations in the Sun, and photons from annihilations in the galactic center.Comment: 4 pages, 3 figures, uses RevTeX4, contribution to Snowmass 200

    Monatomic Co, CoO2_2, and CoO3_3 Nanowires on Ir(100) and Pt(100) surfaces: Formation, Structure, and Energetics

    Full text link
    In this study we investigate the structural and chemical changes of monatomic CoO2_2 chains grown self-organized on the Ir(100) surface [P. Ferstl et al., PRL 117, 2016, 046101] and on Pt(100) under reducing and oxidizing conditions. By a combination of quantitative low-energy electron diffraction, scanning tunnelling microscopy, and density functional theory we show that the cobalt oxide wires are completely reduced by H2_2 at temperatures above 320 K and a 3x1 ordered Ir2_2Co or Pt2_2Co surface alloy is formed. Depending on temperature the surface alloy on Ir(100) is either hydrogen covered (T < 400 K) or clean and eventually undergoes an irreversible order-disorder transition at about 570 K. The Pt2_2Co surface alloy disorders with the desorption of hydrogen, whereby Co submerges into subsurface sites. Vice versa, applying stronger oxidants than O2_2 such as NO2_2 leads to the formation of CoO3 chains on Ir(100) in a 3x1 superstructure. On Pt(100) such a CoO3_3 phase could not be prepared so far, which however, is due to the UHV conditions of our experiments. As revealed by theory this phase will become stable in a regime of higher pressure. In general, the structures can be reversibly switched on both surfaces using the respective agents O2_2, NO2_2 and H2_2.Comment: 13 pages, 10 figure

    Re-Evaluation of the Elastic Scattering of Supersymmetric Dark Matter

    Get PDF
    We examine the cross sections for the elastic scattering of neutralinos χ\chi on nucleons p,np,n, as functions of mχm_\chi in the constrained minimal supersymmetric standard model. We find narrow bands of possible values of the cross section, that are considerably lower than some previous estimates. The constrained model is based on the minimal supergravity-inspired framework for the MSSM, with universal scalar and gaugino masses m0,m1/2m_0, m_{1/2}, and μ\mu and the MSSM Higgs masses treated as dependent parameters. We explore systematically the region of the (m1/2,m0)(m_{1/2}, m_0) plane where LEP and other accelerator constraints are respected, and the relic neutralino density lies in the range 0.1Ωχh20.30.1 \le \Omega_{\chi} h^2 \le 0.3 preferred by cosmology. We update previous discussions of both the spin-independent and -dependent scattering matrix elements on protons and neutrons, using recent analyses of low-energy hadron experiments.Comment: 16 pages, latex, 14 eps figure

    Spin dynamics of YbRh2Si2Yb Rh_2 Si_2 observed by Electron Spin Resonance

    Full text link
    Below the Kondo temperature TKT_{\rm K} electron spin resonance (ESR) usually is not observable from the Kondo-ion itself because the characteristic spin fluctuation energy results in a huge width of the ESR line. The heavy fermion metal YbRh2_{2}Si2_{2} seems to be an exceptional case where definite ESR spectra show characteristic properties of the Kondo-ion Yb3+^{3+} well \textit{below} TKT_{\rm K}. We found that the spin dynamics of YbRh2_{2}Si2_{2}, as determined by its ESR relaxation, is spatially characterized by an anisotropy of the zero temperature residual relaxation only.Comment: Presented at NanoRes 2004, Kazan; 4 pages, 3 Figure

    Yang-Mills Solutions on Euclidean Schwarzschild Space

    Get PDF
    We show that the apparently periodic Charap-Duff Yang-Mills `instantons' in time-compactified Euclidean Schwarzschild space are actually time independent. For these solutions, the Yang-Mills potential is constant along the time direction (no barrier) and therefore, there is no tunneling. We also demonstrate that the solutions found to date are three dimensional monopoles and dyons. We conjecture that there are no time-dependent solutions in the Euclidean Schwarzschild background.Comment: 12 pages, references added, version to appear in PR

    Gravitating Instantons In 3 Dimensions

    Get PDF
    We study the Einstein-Chern-Simons gravity coupled to Yang-Mills-Higgs theory in three dimensional Euclidean space with cosmological constant. The classical equations reduce to Bogomol'nyi type first order equations in curved space. There are BPS type gauge theory instanton (monopole) solutions of finite action in a gravitational instanton which itself has a finite action. We also discuss gauge theory instantons in the vacuum (zero action) AdS space. In addition we point out to some exact solutions which are singular.Comment: 17 pages, 4 figures, title has changed, gravitational instanton actions are adde
    corecore