516 research outputs found
Efficient Passive ICS Device Discovery and Identification by MAC Address Correlation
Owing to a growing number of attacks, the assessment of Industrial Control
Systems (ICSs) has gained in importance. An integral part of an assessment is
the creation of a detailed inventory of all connected devices, enabling
vulnerability evaluations. For this purpose, scans of networks are crucial.
Active scanning, which generates irregular traffic, is a method to get an
overview of connected and active devices. Since such additional traffic may
lead to an unexpected behavior of devices, active scanning methods should be
avoided in critical infrastructure networks. In such cases, passive network
monitoring offers an alternative, which is often used in conjunction with
complex deep-packet inspection techniques. There are very few publications on
lightweight passive scanning methodologies for industrial networks. In this
paper, we propose a lightweight passive network monitoring technique using an
efficient Media Access Control (MAC) address-based identification of industrial
devices. Based on an incomplete set of known MAC address to device
associations, the presented method can guess correct device and vendor
information. Proving the feasibility of the method, an implementation is also
introduced and evaluated regarding its efficiency. The feasibility of
predicting a specific device/vendor combination is demonstrated by having
similar devices in the database. In our ICS testbed, we reached a host
discovery rate of 100% at an identification rate of more than 66%,
outperforming the results of existing tools.Comment: http://dx.doi.org/10.14236/ewic/ICS2018.
Structure and Stability of Keplerian MHD Jets
MHD jet equilibria that depend on source properties are obtained using a
simplified model for stationary, axisymmetric and rotating magnetized outflows.
The present rotation laws are more complex than previously considered and
include a Keplerian disc. The ensuing jets have a dense, current-carrying
central core surrounded by an outer collar with a return current. The
intermediate part of the jet is almost current-free and is magnetically
dominated. Most of the momentum is located around the axis in the dense core
and this region is likely to dominate the dynamics of the jet. We address the
linear stability and the non-linear development of instabilities for our models
using both analytical and 2.5-D numerical simulation's. The instabilities seen
in the simulations develop with a wavelength and growth time that are well
matched by the stability analysis. The modes explored in this work may provide
a natural explanation for knots observed in astrophysical jets.Comment: 35 pages, accepted by the Ap
TADPOL: A 1.3 mm Survey of Dust Polarization in Star-forming Cores and Regions
We present {\lambda}1.3 mm CARMA observations of dust polarization toward 30
star-forming cores and 8 star-forming regions from the TADPOL survey. We show
maps of all sources, and compare the ~2.5" resolution TADPOL maps with ~20"
resolution polarization maps from single-dish submillimeter telescopes. Here we
do not attempt to interpret the detailed B-field morphology of each object.
Rather, we use average B-field orientations to derive conclusions in a
statistical sense from the ensemble of sources, bearing in mind that these
average orientations can be quite uncertain. We discuss three main findings:
(1) A subset of the sources have consistent magnetic field (B-field)
orientations between large (~20") and small (~2.5") scales. Those same sources
also tend to have higher fractional polarizations than the sources with
inconsistent large-to-small-scale fields. We interpret this to mean that in at
least some cases B-fields play a role in regulating the infall of material all
the way down to the ~1000 AU scales of protostellar envelopes. (2) Outflows
appear to be randomly aligned with B-fields; although, in sources with low
polarization fractions there is a hint that outflows are preferentially
perpendicular to small-scale B-fields, which suggests that in these sources the
fields have been wrapped up by envelope rotation. (3) Finally, even at ~2.5"
resolution we see the so-called "polarization hole" effect, where the
fractional polarization drops significantly near the total intensity peak. All
data are publicly available in the electronic edition of this article.Comment: 53 pages, 37 figures -- main body (13 pp., 3 figures), source maps
(32 pp., 34 figures), source descriptions (8 pp.). Accepted by the
Astrophysical Journal Supplemen
Radiative transfer models of non-spherical prestellar cores
We present 2D Monte Carlo radiative transfer simulations of prestellar cores.
We consider two types of asymmetry: disk-like asymmetry, in which the core is
denser towards the equatorial plane than towards the poles; and axial
asymmetry, in which the core is denser towards the south pole than the north
pole. We limit our treatment to cores with mild asymmetries, which are exposed
directly to the interstellar radiation field or are embedded inside molecular
clouds.
The isophotal maps of a core depend strongly on the viewing angle. Maps at
wavelengths longer than the peak of the SED (e.g. 850 micron) essentially trace
the column-density. Thus, for instance, cores with disk-like asymmetry appear
elongated when mapped at 850 micron from close to the equatorial plane.
However, at wavelengths near the peak of the SED (e.g. 200 micron), the
emissivity is more strongly dependent on the temperature, and therefore, at
particular viewing angles, there are characteristic features which reflect a
more complicated convolution of the density and temperature fields within the
core.
These characteristic features are on scales 1/5 to 1/3 of the overall core
size, and so high resolution observations are needed to observe them. They are
also weaker if the core is embedded in a molecular cloud (because the range of
temperature within the core is then smaller), and so high sensitivity is needed
to detect them. Herschel, to be launched in 2007, will in principle provide the
necessary resolution and sensitivity at 170 to 250 micron.Comment: 16 pages, 22 figures, accepted by A&A, also available (with high
resolution figures) at
http://www.astro.cf.ac.uk/pub/Dimitrios.Stamatellos/publications
an overview of the MHONGOOSE survey: Observing nearby galaxies with MeerKAT
© Copyright owned by the author(s). MHONGOOSE is a deep survey of the neutral hydrogen distribution in a representative sample of 30 nearby disk and dwarf galaxies with H I masses from ∼ 106 to ∼ 1011 M, and luminosities from MR ∼ 12 to MR ∼ −22. The sample is selected to uniformly cover the available range in log(MHI). Our extremely deep observations, down to H I column density limits of well below 1018 cm−2 — or a few hundred times fainter than the typical H I disks in galaxies — will directly detect the effects of cold accretion from the intergalactic medium and the links with the cosmic web. These observations will be the first ever to probe the very low-column density neutral gas in galaxies at these high resolutions. Combination with data at other wavelengths, most of it already available, will enable accurate modeling of the properties and evolution of the mass components in these galaxies and link these with the effects of environment, dark matter distribution, and other fundamental properties such as halo mass and angular momentum. MHONGOOSE can already start addressing some of the SKA-1 science goals and will provide a comprehensive inventory of the processes driving the transformation and evolution of galaxies in the nearby universe at high resolution and over 5 orders of magnitude in column density. It will be a Nearby Galaxies Legacy Survey that will be unsurpassed until the advent of the SKA, and can serve as a highly visible, lasting statement of MeerKAT’s capabilities
The JCMT Gould Belt Survey: A First Look at the Auriga–California Molecular Cloud with SCUBA-2
We present 850 and 450 μm observations of the dense regions within the Auriga–California molecular cloud using SCUBA-2 as part of the JCMT Gould Belt Legacy Survey to identify candidate protostellar objects, measure the masses of their circumstellar material (disk and envelope), and compare the star formation to that in the Orion A molecular cloud. We identify 59 candidate protostars based on the presence of compact submillimeter emission, complementing these observations with existing Herschel/SPIRE maps. Of our candidate protostars, 24 are associated with young stellar objects (YSOs) in the Spitzer and Herschel/PACS catalogs of 166 and 60 YSOs, respectively (177 unique), confirming their protostellar nature. The remaining 35 candidate protostars are in regions, particularly around LkHα 101, where the background cloud emission is too bright to verify or rule out the presence of the compact 70 μm emission that is expected for a protostellar source. We keep these candidate protostars in our sample but note that they may indeed be prestellar in nature. Our observations are sensitive to the high end of the mass distribution in Auriga–Cal. We find that the disparity between the richness of infrared star-forming objects in Orion A and the sparsity in Auriga–Cal extends to the submillimeter, suggesting that the relative star formation rates have not varied over the Class II lifetime and that Auriga–Cal will maintain a lower star formation efficiency
UWISH2 -- The UKIRT Widefield Infrared Survey for H2
We present the goals and preliminary results of an unbiased, near-infrared,
narrow-band imaging survey of the First Galactic Quadrant (10deg<l<65deg ;
-1.3deg<b<+1.3deg). This area includes most of the Giant Molecular Clouds and
massive star forming regions in the northern hemisphere. The survey is centred
on the 1-0S(1) ro-vibrational line of H2, a proven tracer of hot, dense
molecular gas in star-forming regions, around evolved stars, and in supernova
remnants. The observations complement existing and upcoming photometric surveys
(Spitzer-GLIMPSE, UKIDSS-GPS, JCMT-JPS, AKARI, Herschel Hi-GAL, etc.), though
we probe a dynamically active component of star formation not covered by these
broad-band surveys. Our narrow-band survey is currently more than 60% complete.
The median seeing in our images is 0.73arcsec. The images have a 5sigma
detection limit of point sources of K=18mag and the surface brightness limit is
10^-19Wm^-2arcsec^-2 when averaged over our typical seeing. Jets and outflows
from both low and high mass Young Stellar Objects are revealed, as are new
Planetary Nebulae and - via a comparison with earlier K-band observations
acquired as part of the UKIDSS GPS - numerous variable stars. With their
superior spatial resolution, the UWISH2 data also have the potential to reveal
the true nature of many of the Extended Green Objects found in the GLIMPSE
survey.Comment: 14pages, 8figures, 2tables, accepted for publication by MNRAS, a
version with higher resolution figures can be found at
http://astro.kent.ac.uk/~df
The JCMT Gould Belt Survey: Evidence for radiative heating in Serpens MWC 297 and its influence on local star formation
We present SCUBA-2 450micron and 850micron observations of the Serpens MWC
297 region, part of the JCMT Gould Belt Survey of nearby star-forming regions.
Simulations suggest that radiative feedback influences the star-formation
process and we investigate observational evidence for this by constructing
temperature maps. Maps are derived from the ratio of SCUBA-2 fluxes and a two
component model of the JCMT beam for a fixed dust opacity spectral index of
beta = 1.8. Within 40 of the B1.5Ve Herbig star MWC 297, the submillimetre
fluxes are contaminated by free-free emission with a spectral index of
1.03+-0.02, consistent with an ultra-compact HII region and polar winds/jets.
Contamination accounts for 73+-5 per cent and 82+-4 per cent of peak flux at
450micron and 850micron respectively. The residual thermal disk of the star is
almost undetectable at these wavelengths. Young Stellar Objects are confirmed
where SCUBA-2 850micron clumps identified by the fellwalker algorithm coincide
with Spitzer Gould Belt Survey detections. We identify 23 objects and use Tbol
to classify nine YSOs with masses 0.09 to 5.1 Msun. We find two Class 0, one
Class 0/I, three Class I and three Class II sources. The mean temperature is
15+-2K for the nine YSOs and 32+-4K for the 14 starless clumps. We observe a
starless clump with an abnormally high mean temperature of 46+-2K and conclude
that it is radiatively heated by the star MWC 297. Jeans stability provides
evidence that radiative heating by the star MWC 297 may be suppressing clump
collapse.Comment: 24 pages, 13 figures, 7 table
- …
