315 research outputs found

    Unstable geodesics and topological field theory

    Full text link
    A topological field theory is used to study the cohomology of mapping space. The cohomology is identified with the BRST cohomology realizing the physical Hilbert space and the coboundary operator given by the calculations of tunneling between the perturbative vacua. Our method is illustrated by a simple example.Comment: 28 pages, OCU-15

    The Physics Inside Topological Quantum Field Theories

    Get PDF
    We show that the equations of motion defined over a specific field space are realizable as operator conditions in the physical sector of a generalized Floer theory defined over that field space. The ghosts associated with such a construction are found not to be dynamical. This construction is applied to gravity on a four dimensional manifold, MM; whereupon, we obtain Einstein's equations via surgery, along MM, in a five-dimensional topological quantum field theory.Comment: LaTeX, 7 page

    Morse homology for the heat flow

    Full text link
    We use the heat flow on the loop space of a closed Riemannian manifold to construct an algebraic chain complex. The chain groups are generated by perturbed closed geodesics. The boundary operator is defined in the spirit of Floer theory by counting, modulo time shift, heat flow trajectories that converge asymptotically to nondegenerate closed geodesics of Morse index difference one.Comment: 89 pages, 3 figure

    Quantum cohomology of flag manifolds and Toda lattices

    Full text link
    We discuss relations of Vafa's quantum cohomology with Floer's homology theory, introduce equivariant quantum cohomology, formulate some conjectures about its general properties and, on the basis of these conjectures, compute quantum cohomology algebras of the flag manifolds. The answer turns out to coincide with the algebra of regular functions on an invariant lagrangian variety of a Toda lattice.Comment: 35 page

    Hypercontact structures and Floer homology

    Full text link
    We introduce a new Floer theory associated to a pair consisting of a Cartan hypercontact 3-manifold M and a hyperkaehler manifold X.Comment: 74 page

    Symplectic cohomology and q-intersection numbers

    Get PDF
    Given a symplectic cohomology class of degree 1, we define the notion of an equivariant Lagrangian submanifold. The Floer cohomology of equivariant Lagrangian submanifolds has a natural endomorphism, which induces a grading by generalized eigenspaces. Taking Euler characteristics with respect to the induced grading yields a deformation of the intersection number. Dehn twists act naturally on equivariant Lagrangians. Cotangent bundles and Lefschetz fibrations give fully computable examples. A key step in computations is to impose the "dilation" condition stipulating that the BV operator applied to the symplectic cohomology class gives the identity. Equivariant Lagrangians mirror equivariant objects of the derived category of coherent sheaves.Comment: 32 pages, 9 figures, expanded introduction, added details of example 7.5, added discussion of sign

    Contact orderability up to conjugation

    Get PDF
    We study in this paper the remnants of the contact partial order on the orbits of the adjoint action of contactomorphism groups on their Lie algebras. Our main interest is a class of non-compact contact manifolds, called convex at infinity.Comment: 28 pages, 1 figur

    An exact sequence for contact- and symplectic homology

    Full text link
    A symplectic manifold WW with contact type boundary M=WM = \partial W induces a linearization of the contact homology of MM with corresponding linearized contact homology HC(M)HC(M). We establish a Gysin-type exact sequence in which the symplectic homology SH(W)SH(W) of WW maps to HC(M)HC(M), which in turn maps to HC(M)HC(M), by a map of degree -2, which then maps to SH(W)SH(W). Furthermore, we give a description of the degree -2 map in terms of rational holomorphic curves with constrained asymptotic markers, in the symplectization of MM.Comment: Final version. Changes for v2: Proof of main theorem supplemented with detailed discussion of continuation maps. Description of degree -2 map rewritten with emphasis on asymptotic markers. Sec. 5.2 rewritten with emphasis on 0-dim. moduli spaces. Transversality discussion reorganized for clarity (now Remark 9). Various other minor modification

    Singularly perturbed elliptic problems with nonautonomous asymptotically linear nonlinearities

    Full text link
    We consider a class of singularly perturbed elliptic problems with nonautonomous asymptotically linear nonlinearities. The dependence on the spatial coordinates comes from the presence of a potential and of a function representing a saturation effect. We investigate the existence of nontrivial nonnegative solutions concentrating around local minima of both the potential and of the saturation function. Necessary conditions to locate the possible concentration points are also given

    Fast soliton scattering by delta impurities

    Full text link
    We study the Gross-Pitaevskii equation (nonlinear Schroedinger equation) with a repulsive delta function potential. We show that a high velocity incoming soliton is split into a transmitted component and a reflected component. The transmitted mass (L^2 norm squared) is shown to be in good agreement with the quantum transmission rate of the delta function potential. We further show that the transmitted and reflected components resolve into solitons plus dispersive radiation, and quantify the mass and phase of these solitons.Comment: 32 pages, 3 figure
    corecore