732 research outputs found
Compartmentalized and signal-selective gap junctional coupling in the hearing cochlea
Gap junctional intercellular communication (GJIC) plays a major role in cochlear function. Recent evidence suggests that connexin 26 (Cx26) and Cx30 are the major constituent proteins of cochlear gap junction channels, possibly in a unique heteromeric configuration. We investigated the functional and structural properties of native cochlear gap junctions in rats, from birth to the onset of hearing [ postnatal day 12 (P12)]. Confocal immunofluorescence revealed increasing Cx26 and Cx30 expression from P0 to P12. Functional GJIC was assessed by coinjection of Lucifer yellow (LY) and Neurobiotin (NBN) during whole-cell recordings in cochlear slices. At P0, there was restricted dye transfer between supporting cells around outer hair cells. Transfer was more extensive between supporting cells around inner hair cells. At P8, there was extensive transfer of both dyes between all supporting cell types. By P12, LY no longer transferred between the supporting cells immediately adjacent to hair cells but still transferred between more peripheral cells. NBN transferred freely, but it did not transfer between inner and outer pillar cells. Freeze fracture further demonstrated decreasing GJIC between inner and outer pillar cells around the onset of hearing. These data are supportive of the appearance of signal-selective gap junctions around the onset of hearing, with specific properties required to support auditory function. Furthermore, they suggest that separate medial and lateral buffering compartments exist in the hearing cochlea, which are individually dedicated to the homeostasis of inner hair cells and outer hair cells
Molecular and functional characterization of gap junctions in the avian inner ear.
To analyze the fundamental role of gap junctions in the vertebrate inner ear, we examined molecular and functional characteristics of gap junctional communication (GJC) in the auditory and vestibular system of the chicken. By screening inner ear tissues for connexin isoforms using degenerate reverse transcription-PCR, we identified, in addition to chicken Cx43 (cCx43) and the inner-ear-specific cCx30, an as yet uncharacterized connexin predicted to be the ortholog of the mammalian Cx26. In situ hybridization indicated that cCx30 and cCx26 transcripts were both widely expressed in the cochlear duct and utricle in an overlapping pattern, suggesting coexpression of these isoforms similar to that in the mammalian inner ear. Immunohistochemistry demonstrated that cCx43 was present in gap junctions connecting supporting cells of the basilar papilla, in which its immunofluorescence colocalized with that of cCx30. However, cCx43 was absent from supporting cell gap junctions of the utricular macula. This variation in the molecular composition of gap junction plaques coincided with differences in the functional properties of GJC between the auditory and vestibular sensory epithelia. Fluorescence recovery after photobleaching, adapted to examine the diffusion of calcein in inner ear explants, revealed asymmetric communication pathways among supporting cells in the basilar papilla but not in the utricular macula. This study supports the hypothesis that the coexpression of Cx26/Cx30 is unique to gap junctions in the vertebrate inner ear. Furthermore, it demonstrates asymmetric GJC within the supporting cell population of the auditory sensory epithelium, which might mediate potassium cycling and/or intercellular signaling
Connexins and gap junctions in the inner ear - it's not just about K(+) recycling
Normal development, function and repair of the sensory epithelia in the inner ear are all dependent on gap junctional intercellular communication. Mutations in the connexin genes GJB2 and GJB6 (encoding CX26 and CX30) result in syndromic and non-syndromic deafness via various mechanisms. Clinical vestibular defects, however, are harder to connect with connexin dysfunction. Cx26 and Cx30 proteins are widely expressed in the epithelial and connective tissues of the cochlea, where they may form homomeric or heteromeric gap junction channels in a cell-specific and spatiotemporally complex fashion. Despite the study of mutant channels and animal models for both recessive and dominant autosomal deafness, it is still unclear why gap junctions are essential for auditory function, and why Cx26 and Cx30 do not compensate for each other in vivo. Cx26 appears to be essential for normal development of the auditory sensory epithelium, but may be dispensable during normal hearing. Cx30 appears to be essential for normal repair following sensory cell loss. The specific modes of intercellular signalling mediated by inner ear gap junction channels remain undetermined, but they are hypothesised to play essential roles in the maintenance of ionic and metabolic homeostasis in the inner ear. Recent studies have highlighted involvement of gap junctions in the transfer of essential second messengers between the non-sensory cells, and have proposed roles for hemichannels in normal hearing. Here, we summarise the current knowledge about the molecular and functional properties of inner ear gap junctions, and about tissue pathologies associated with connexin mutations
Deviations from Scale Invariance near a General Conformal Background
Deviations from scale invariance resulting from small perturbations of a
general two dimensional conformal field theory are studied. They are expressed
in terms of beta functions for renormalization of general couplings under local
change of scale. The beta functions for homogeneous background are given
perturbatively in terms of the data of the original conformal theory without
any specific assumptions on its nature. The renormalization of couplings to
primary operators and to first descendents is considered as well as that of
couplings of a dilatonic type which involve explicit dependence on world sheet
curvature.Comment: 24 pages.; latex file; RI-147; (07/92
More Results in Supersymmetric Gauge Theories
We present the exact effective superpotentials in , supersymmetric
gauge theories with triplets and doublets of matter
superfields. For the theories with a single triplet matter superfield we
present the exact gauge couplings for arbitrary bare masses and Yukawa
couplings.Comment: 9 page
Opioid modulation of GABA release in the rat inferior colliculus
Background: The inferior colliculus, which receives almost all ascending and descending auditory signals, plays a crucial role in the processing of auditory information. While the majority of the recorded activities in the inferior colliculus are attributed to GABAergic and glutamatergic signalling, other neurotransmitter systems are expressed in this brain area including opiate peptides and their receptors which may play a modulatory role in neuronal communication.Results: Using a perfusion protocol we demonstrate that morphine can inhibit KCl-induced release of [H-3] GABA from rat inferior colliculus slices. DAMGO ([D-Ala(2), N-Me-Phe(4), Gly(5)ol]-enkephalin) but not DADLE ([D-Ala2, D-Leu5]-enkephalin or U69593 has the same effect as morphine indicating that mu rather than delta or kappa opioid receptors mediate this action. [H-3]GABA release was diminished by 16%, and this was not altered by the protein kinase C inhibitor bisindolylmaleimide I. Immunostaining of inferior colliculus cryosections shows extensive staining for glutamic acid decarboxylase, more limited staining for mu opiate receptors and relatively few neurons co-stained for both proteins.Conclusion: The results suggest that mu-opioid receptor ligands can modify neurotransmitter release in a sub population of GABAergic neurons of the inferior colliculus. This could have important physiological implications in the processing of hearing information and/or other functions attributed to the inferior colliculus such as audiogenic seizures and aversive behaviour
Myosin VIIA is required for aminoglycoside accumulation in cochlear hair cells.
Myosin VIIA is expressed by sensory hair cells and has a primary structure predicting a role in membrane trafficking and turnover, processes that may underlie the susceptibility of hair cells to aminoglycoside antibiotics. [3H]Gentamicin accumulation and the effects of aminoglycosides were therefore examined in cochlear cultures of mice with different missense mutations in the myosin VIIA gene, Myo7a, to see whether myosin VIIA plays a role in aminoglycoside ototoxicity. Hair cells from homozygous mutant Myo7a(sh1) mice, with a mutation in a non-conserved region of the myosin VIIA head, respond rapidly to aminoglycoside treatment and accumulate high levels of gentamicin. Hair cells from homozygous mutant Myo7a(6J) mice, with a mutation at a highly conserved residue close to the ATP binding site of the myosin VIIA head, do not accumulate [3H]gentamicin and are protected from aminoglycoside ototoxicity. Hair cells from heterozygotes of both alleles accumulate [3H]gentamicin and respond to aminoglycosides. Although aminoglycoside uptake is thought to be via apical surface-associated endocytosis, coated pit numbers on the apical membrane of heterozygous and homozygous Myo7a(6J) hair cells are similar. Pulse-chase experiments with cationic ferritin confirm that the apical endocytotic pathway is functional in homozygous Myo7a(6J) hair cells. Transduction currents can be recorded from both heterozygous and homozygous Myo7a(6J) hair cells, suggesting it is unlikely that the drug enters via diffusion through the mechanotransducer channel. The results show that myosin VIIA is required for aminoglycoside accumulation in hair cells. Myosin VIIA may transport a putative aminoglycoside receptor to the hair cell surface, indirectly translocate it to sites of membrane retrieval, or retain it in the endocytotic pathway
Modularity map of the network of human cell differentiation
Cell differentiation in multicellular organisms is a complex process whose
mechanism can be understood by a reductionist approach, in which the individual
processes that control the generation of different cell types are identified.
Alternatively, a large scale approach in search of different organizational
features of the growth stages promises to reveal its modular global structure
with the goal of discovering previously unknown relations between cell types.
Here we sort and analyze a large set of scattered data to construct the network
of human cell differentiation (NHCD) based on cell types (nodes) and
differentiation steps (links) from the fertilized egg to a crying baby. We
discover a dynamical law of critical branching, which reveals a fractal
regularity in the modular organization of the network, and allows us to observe
the network at different scales. The emerging picture clearly identifies
clusters of cell types following a hierarchical organization, ranging from
sub-modules to super-modules of specialized tissues and organs on varying
scales. This discovery will allow one to treat the development of a particular
cell function in the context of the complex network of human development as a
whole. Our results point to an integrated large-scale view of the network of
cell types systematically revealing ties between previously unrelated domains
in organ functions.Comment: 32 pages, 7 figure
Absence of plastin 1 causes abnormal maintenance of hair cell stereocilia and a moderate form of hearing loss in mice
Hearing relies on the mechanosensory inner and outer hair cells (OHCs) of the organ of Corti, which convert mechanical deflections of their actin-rich stereociliary bundles into electrochemical signals. Several actin-associated proteins are essential for stereocilia formation and maintenance, and their absence leads to deafness. One of the most abundant actin-bundling proteins of stereocilia is plastin 1, but its function has never been directly assessed. Here, we found that plastin 1 knock-out (Pls1 KO) mice have a moderate and progressive form of hearing loss across all frequencies. Auditory hair cells developed normally in Pls1 KO, but in young adult animals, the stereocilia of inner hair cells were reduced in width and length. The stereocilia of OHCs were comparatively less affected; however, they also showed signs of degeneration in ageing mice. The hair bundle stiffness and the acquisition of the electrophysiological properties of hair cells were unaffected by the absence of plastin 1, except for a significant change in the adaptation properties, but not the size of the mechanoelectrical transducer currents. These results show that in contrast to other actin-bundling proteins such as espin, harmonin or Eps8, plastin 1 is dispensable for the initial formation of stereocilia. However, the progressive hearing loss and morphological defects of hair cells in adult Pls1 KO mice point at a specific role for plastin 1 in the preservation of adult stereocilia and optimal hearing. Hence, mutations in the human PLS1 gene may be associated with relatively mild and progressive forms of hearing loss
Selective ablation of pillar and deiters' cells severely affects cochlear postnatal development and hearing in mice.
Mammalian auditory hair cells (HCs) are inserted into a well structured environment of supporting cells (SCs) and acellular matrices. It has been proposed that when HCs are irreversibly damaged by noise or ototoxic drugs, surrounding SCs seal the epithelial surface and likely extend the survival of auditory neurons. Because SCs are more resistant to damage than HCs, the effects of primary SC loss on HC survival and hearing have received little attention. We used the Cre/loxP system in mice to specifically ablate pillar cells (PCs) and Deiters' cells (DCs). In Prox1CreER(T2)+/-;Rosa26(DTA/+) (Prox1DTA) mice, Cre-estrogen receptor (CreER) expression is driven by the endogenous Prox1 promoter and, in presence of tamoxifen, removes a stop codon in the Rosa26(DTA/+) allele and induces diphtheria toxin fragment A (DTA) expression. DTA produces cell-autonomous apoptosis. Prox1DTA mice injected with tamoxifen at postnatal days 0 (P0) and P1 show significant DC and outer PC loss at P2-P4, that reaches ∼70% by 1 month. Outer HC loss follows at P14 and is almost complete at 1 month, while inner HCs remain intact. Neural innervation to the outer HCs is disrupted in Prox1DTA mice and auditory brainstem response thresholds in adults are 40-50 dB higher than in controls. The hearing deficit correlates with loss of cochlear amplification. Remarkably, in Prox1DTA mice, the auditory epithelium preserves the ability to seal the reticular lamina and spiral ganglion neuron counts are normal, a key requirement for cochlear implant success. In addition, our results show that cochlear SC pools should be appropriately replenished during HC regeneration strategies
- …
