172 research outputs found
Evaluation of Labeling Strategies for Rotating Maps
We consider the following problem of labeling points in a dynamic map that
allows rotation. We are given a set of points in the plane labeled by a set of
mutually disjoint labels, where each label is an axis-aligned rectangle
attached with one corner to its respective point. We require that each label
remains horizontally aligned during the map rotation and our goal is to find a
set of mutually non-overlapping active labels for every rotation angle so that the number of active labels over a full map rotation of
2 is maximized. We discuss and experimentally evaluate several labeling
models that define additional consistency constraints on label activities in
order to reduce flickering effects during monotone map rotation. We introduce
three heuristic algorithms and compare them experimentally to an existing
approximation algorithm and exact solutions obtained from an integer linear
program. Our results show that on the one hand low flickering can be achieved
at the expense of only a small reduction in the objective value, and that on
the other hand the proposed heuristics achieve a high labeling quality
significantly faster than the other methods.Comment: 16 pages, extended version of a SEA 2014 pape
Fantasy-driven versus contact-driven users of child sexual exploitation material: offender classification and implications for their risk assessment
Since the advent of the internet, convictions for the possession, display, trading and distribution of child sexual exploitation material (CSEM) have risen steadily, but little is known about the appropriate assessment and treatment of this offender group, especially in regards to their risk of reoffending. It has been suggested that a conceptual distinction of fantasy- vs. contact-driven CSEM users might be of merit. Sixty-eight offenders recruited from sex offender treatment providers were assessed via an anonymous computer survey including a variety of clinical and risk-related variables; the findings showed differences in the psychological profiles between CSEM users and contact child sex offenders. Numerical and spatial methods were employed to identify subgroups of CSEM users; these confirmed the two-fold distinction of fantasy vs. contact driven offending. The spatial representation of participants identified three dimensions as crucial in the classification of these subgroups: direct sexual contact with a minor, possession of fantasy-generating material, and social contact with other users with a sexual interest in minors, potentially differentiating distinct offender subgroups with different risks and needs. The current study informed the development of an empirical model of CSEM users that could aid in the assessment of risk of reoffending and cross-over to contact sex offending
The use of Bayesian latent class cluster models to classify patterns of cognitive performance in healthy ageing
The main focus of this study is to illustrate the applicability of latent class analysis in the assessment of cognitive performance profiles during ageing. Principal component analysis (PCA) was used to detect main cognitive dimensions (based on the neurocognitive test variables) and Bayesian latent class analysis (LCA) models (without constraints) were used to explore patterns of cognitive performance among community-dwelling older individuals. Gender, age and number of school years were explored as variables. Three cognitive dimensions were identified: general cognition (MMSE), memory (MEM) and executive (EXEC) function. Based on these, three latent classes of cognitive performance profiles (LC1 to LC3) were identified among the older adults. These classes corresponded to stronger to weaker performance patterns (LC1>LC2>LC3) across all dimensions; each latent class denoted the same hierarchy in the proportion of males, age and number of school years. Bayesian LCA provided a powerful tool to explore cognitive typologies among healthy cognitive agers.The study is integrated in the "Maintaining health in old age through homeostasis (SWITCHBOX)" collaborative project funded by the European Commission FP7 initiative (grant HEALTH-F2-2010-259772). NS and JAP are main team members of the European consortium SWITCHBOX (http://www.switchbox-online.eu/). NCS is supported by a SwitchBox post-doctoral fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript
Effects of Particulate Air Pollution on Cardiovascular Health: A Population Health Risk Assessment
Particulate matter (PM) air pollution is increasingly recognized as an important and modifiable risk factor for adverse health outcomes including cardiovascular disease (CVD). However, there are still gaps regarding large population risk assessment. Results from the nationwide Behavioral Risk Factor Surveillance System (BRFSS) were used along with air quality monitoring measurements to implement a systematic evaluation of PM-related CVD risks at the national and regional scales. CVD status and individual-level risk factors were collected from more than 500,000 BRFSS respondents across 2,231 contiguous U.S. counties for 2007 and 2009. Chronic exposures to PM pollutants were estimated with spatial modeling from measurement data. CVD outcomes attributable to PM pollutants were assessed by mixed-effects logistic regression and latent class regression (LCR), with adjustment for multicausality. There were positive associations between CVD and PM after accounting for competing risk factors: the multivariable-adjusted odds for the multiplicity of CVD outcomes increased by 1.32 (95% confidence interval: 1.23–1.43) and 1.15 (1.07–1.22) times per 10 µg/m3 increase in PM2.5 and PM10 respectively in the LCR analyses. After controlling for spatial confounding, there were moderate estimated effects of PM exposure on multiple cardiovascular manifestations. These results suggest that chronic exposures to ambient particulates are important environmental risk factors for cardiovascular morbidity
The Newcomb-Benford Law in Its Relation to Some Common Distributions
An often reported, but nevertheless persistently striking observation, formalized as the Newcomb-Benford law (NBL), is that the frequencies with which the leading digits of numbers occur in a large variety of data are far away from being uniform. Most spectacular seems to be the fact that in many data the leading digit 1 occurs in nearly one third of all cases. Explanations for this uneven distribution of the leading digits were, among others, scale- and base-invariance. Little attention, however, found the interrelation between the distribution of the significant digits and the distribution of the observed variable. It is shown here by simulation that long right-tailed distributions of a random variable are compatible with the NBL, and that for distributions of the ratio of two random variables the fit generally improves. Distributions not putting most mass on small values of the random variable (e.g. symmetric distributions) fail to fit. Hence, the validity of the NBL needs the predominance of small values and, when thinking of real-world data, a majority of small entities. Analyses of data on stock prices, the areas and numbers of inhabitants of countries, and the starting page numbers of papers from a bibliography sustain this conclusion. In all, these findings may help to understand the mechanisms behind the NBL and the conditions needed for its validity. That this law is not only of scientific interest per se, but that, in addition, it has also substantial implications can be seen from those fields where it was suggested to be put into practice. These fields reach from the detection of irregularities in data (e.g. economic fraud) to optimizing the architecture of computers regarding number representation, storage, and round-off errors
Hui and Walter's latent-class model extended to estimate diagnostic test properties from surveillance data: a latent model for latent data
Diagnostic test sensitivity and specificity are probabilistic estimates with far reaching implications for disease control, management and genetic studies. In the absence of ‘gold standard’ tests, traditional Bayesian latent class models may be used to assess diagnostic test accuracies through the comparison of two or more tests performed on the same groups of individuals. The aim of this study was to extend such models to estimate diagnostic test parameters and true cohort-specific prevalence, using disease surveillance data. The traditional Hui-Walter latent class methodology was extended to allow for features seen in such data, including (i) unrecorded data (i.e. data for a second test available only on a subset of the sampled population) and (ii) cohort-specific sensitivities and specificities. The model was applied with and without the modelling of conditional dependence between tests. The utility of the extended model was demonstrated through application to bovine tuberculosis surveillance data from Northern and the Republic of Ireland. Simulation coupled with re-sampling techniques, demonstrated that the extended model has good predictive power to estimate the diagnostic parameters and true herd-level prevalence from surveillance data. Our methodology can aid in the interpretation of disease surveillance data, and the results can potentially refine disease control strategies
Behavioral market segmentation of binary guest survey data with bagged clustering
Binary survey data from the Austrian National Guest Survey conducted in the summer season of 1997 were used to identify behavioral market segments on the basis of vacation activity information. Bagged clustering overcomes a number of difficulties typically encountered when partitioning large binary data sets: The partitions have greater structural stability over repetitions of the algorithm and the question of the "correct" number of clusters is less important because of the hierarchical step of the cluster analysis. Finally, the bootstrap part of the algorithm provides means for assessing and visualizing segment stability for each input variable. (author's abstract)Series: Report Series SFB "Adaptive Information Systems and Modelling in Economics and Management Science
Academic personnel selection: Description and prognosis of the decisions made by the committee for the selection of candidates for a full professorship
- …
